Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книга по биологическим ритмам.doc
Скачиваний:
54
Добавлен:
08.11.2018
Размер:
6.3 Mб
Скачать

Биологические ритмы. В 2-х т. Т. 1. Пер. С англ. — м.: Мир, 1984.— 414 с.

Циркадианные системы: общая перспектива 53

  1. Sounders D. S. The temperature-compensated photoperiodic clock «programming» development and pupal diapause in the flesh-fly Sarcophaga argyrostoma, J. of Insect Physiology, 17, 801—812 (1971).

  2. Saunders D. S. Circadian control of larval growth rate in Sarcophaga argyrostoma, Proceedings of the National Academy of Sciences USA, 69, 2738— 2740 (1972).

  3. Saunders D. S. The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma, J. of Insect Physiology, 19, 1941—1954 (1973).

  4. Saunders D. S. Evidence for «dawn» and «dusk» oscillators in the Nasonia photoperiodic clock, J. of Insect Physiology, 20, 77—88 (1974).

  5. Saunders D. S. Insect Clocks, London, .Pergamon Press, 1976, pp. 1—279.

  6. Schweiger E., Wallraff H. G., Schweiger H.-G. Endogenous circadian rhythm in cytoplasm of Acetabularia: Influence of the nucleus, Science, 146, 657— 659 (1964).

  7. Schweiger E., Wallraff H. G., Schweiger H.-G. Uber tagesperiodische Schwankungen der Sauerstoffbilanz kernhaltiger und kernloser Acetabularia tnediterraneana, Zeitschrift fur Naturforschung, 19, 499—505 (1964).

  8. Sokolove P. G. Localization of the cockroach optic lobe circadian pacemaker with microlesions, Brain Research, 87, 13—21 (1975).

  9. Stepha F. K-, Zucker 1. Circadian rhythms in drinking behavior and locomotory activity of rats are eliminated by hypothalamic lesions, Proceedings of the National Academy of Sciences USA, 69, 1583—1586 (1972).

  10. Suda M., Saito M. Coordinative regulation of feeding behavior and metabolism by a circadian timing system. In: M. Suda, O. Hayaishi and H. Nakagawa (eds.), Biological Rhythms, Their Central Mechanism, New York, Elsevier Press, 1980.

  11. Sweeney В. М. Rhythmic Phenomena in Plants, New York, Academic Press, 1969.

  12. Sweeney В., Hastings J. W. Effects of temperature upon diurnal rhythms, Cold Spring Harbor Symposia on Quantitative Biology, 25, 87—104 (1960).

  13. Takahashi J., Menaker M. Brain mechanisms in avian circadian systems. In: M. Suda, O. Hayaishi, and H. Nakagawa (eds.), Biological Rhythms, Their Central Mechanism, New York, Elsevier Press, 1980.

  14. Takahashi J., Hamm H., Menaker M. Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro, Proceedings of the National Academy of Sciences USA, 77, 2319—2322 (1980).

  15. Truman J. W. Physiology of insect rhythms. II. The silk moth brain as the location of the biological clock controlling eclosion, J. of Comparative Physiology, 81, 99—114 (1972).

  16. Truman J. W. Extrarètinal photoreception in insects, Photochemistry and Photobiology, 23, 215—225 (1976).

  17. Turek P., McMillan J. P., Menaker M. Melatonin: Effects on the circadian locomotor rhythm of sparrows, Science, 194, 1441—1443 (1976).

  18. Тыщенко В. П. Двухосцилляторная модель физиологического механизма фотопериодичестой реакции у насекомых, Журнал общей биологии, 33, 21—31 (1966).

  19. Underwood H. Circadian organization in lizards: The role of the pineal organ, Science, 195, 587—589 (1977).

  20. Underwood H., Menaker M. Extrarètinal photoreception in lizards, Photochemistry and Photobiology, 23, 227—243 (1976).

  1. Wahl O. Neue Untersuchungen uber das Zeitgedachtnis der Bienen, Zeitschrift fur vergleichende Physiologie, 16, 529—589 (1932).

  2. Went F. Photo- and Thermoperiodic effects in plant growth, Cold Spring Harbor Symposia in Quantitative Biology, 25, 221—230 (1960).

  3. Zimmerman N. H., Menaker M. The pineal gland: A pacemaker within the circadian system of the house sparrow, Proceedings of the National Academy of Sciences USA, 76, 999—1003 (1979).

Биологические ритмы. В 2-х т. Т. 1. Пер. с англ. — М.: Мир, 1984.— 414 с.

Глава 3. СВОБОДНОТЕКУЩИЕ И ЗАХВАЧЕННЫЕ ЦИРКАДИАННЫЕ РИТМЫ

Ю. Ашофф

Введение

Циркадианные ритмы в постоянных условиях проявляют себя как «свободнотекущие», подобно другим автономным (самоподдерживающимся) колебаниям, а при воздействии периодических факторов среды — времязадателей, или принудителей,— поддаются захватыванию (синхронизации). Свободнотекущий период  зависит от биологического вида, от индивидуальности и физиологического состояния, от окружающих условий в данный момент и в прошлом. В захваченном состоянии поддерживается строго определенная фаза ритма относительно времязадателя.

Запись двигательной активности обезьяны Масаса nemestriпа, представленная на рис. 1, иллюстрирует некоторые основные принципы. В условиях чередования света и темноты (СТ) обезьяна активна только в светлое время, причем начало активности несколько упреждает момент включения света. При постоянном освещении (СС) период короче суток, и при 0,03 лк он в среднем немного меньше, чем при 0,1 лк. Длительность интервала между моментами начала активности в последовательных циклах «плавает» ото дня ко дню вокруг средней величины периода , которая в свою очередь медленно изменяется со временем (особенно при 0,03 лк). Ресинхронизация времязадателем (принудителем) достигается в течение нескольких суток за счет удлинения периода. Далее эти явления будут рассмотрены более подробно.