Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глава 4 ГОЛОВНОЙ МОЗГ И ГЛАЗ.doc
Скачиваний:
107
Добавлен:
07.02.2015
Размер:
11.35 Mб
Скачать

Глава 4. Головной мозг и глаз

Теперь мы кратко охарактеризуем каждую из указанных систем.

Нейронная система палочек. Палочки и связанные с ними нейроны сетчатки ответст­венны за функционирование трактов, обеспечи­вающих «ночное зрение». То есть эта система нейронов, повышая чувствительность зритель­ной системы, позволяет анализировать зритель­ные объекты при низком освещении (скотопи-ческие условия).

Несмотря на то, что у человека существует «центральное зрение», определяющее высокую разрешающую способность зрительного анали­затора, и цветовое зрение, система палочек так­же важна. При патологии нейронов этой систе­мы развивается ночная слепота, наиболее часто встречающаяся при пигментном ретините.

Показано, что в сетчатке человека преобла­дают палочки, за исключением фовеолы. Их концентрация достигает максимума в кольце вокруг фовеа, шириной приблизительно 5 мм [405]. Высокая плотность фоторецепторов обес­печивает, в значительной степени, остроту зре­ния (см. главу 3). Максимум поглощения свето­вой энергии пигментом палочки располагается в области 497 нм.

Каким же образом организована система па­лочек?

Сигнал, сформированный в момент освеще­ния, от палочки передается биполярным клет­кам. Выявляется только один морфологический тип биполярной клетки, который формирует си-наптическую связь с палочкой (синапс ленточ-

ного типа). Эта биполярная клетка одномомент­но получает информацию от 15—30 палочек, что является морфологической основой кон­вергенции сигнала. Происходит это в наруж­ном плексиформном слое (рис. 4.2.3; 4.2.8, см. цв. вкл.). Затем биполярные клетки палочек посылают аксоны в направлении внутреннего плексиформного слоя, где они заканчиваются в глубоких его слоях вблизи тел ганглиозных клеток. При этом прямого контакта между би­полярной и ганглиозной клетками нет, а взаи­модействие между ними осуществляется по­средством амакриновых клеток. Вся обработка информации происходит на уровне дендритов амакриновых клеток (внутренний плексиформ-ный слой).

Функции большинства типов амакриновых клеток изучены пока недостаточно. Тем не ме­нее известно, что они обеспечивают антагони­стическое окружение рецептивного поля, благо­даря механизму латерального торможения. По­добная организация нейронов обеспечивает ди­вергенцию и конвергенцию сигнала палочек на уровне биполярных клеток палочек и амакри­новых клеток перед тем, как информация по­ступает ганглиозной клетке.

Формирование рецептивного поля осуществ­ляется несколькими типами амакриновых кле­ток (All, A17).

Амакриновая клетка АН типа характеризует­ся тем, что при помощи щелевого соединения (электрический синапс) она соединяется с би­полярной клеткой колбочки (рис. 4.2.8, 4.2.9).

Палочки

Колбочки

Рис. 4.2.9. Особенности связей амакриновой клетки типа А18 (объяснение в тексте)

Функциональная анатомия зрительной системы

419

Последняя, в свою очередь, вступает в контакт с ганглиозной клеткой колбочки, что происхо­дит в субслое b внутреннего плексиформного слоя [314]. В результате этого формируется так называемый «возвратный синапс», извест­ный как реципроктный синапс. Эти ганглиоз-ные клетки отвечают на освещение деполяриза­цией, формируя ON-центр рецептивного поля. В то же время амакриновые клетки АН, кон­тактирующие с ганглиозной клеткой при помо­щи синаптической ленты в субслое а, отвечают на освещение сетчатки гиперполяризацией, об­разуя OFF-центр рецептивного поля (рис. 4.2.8, 4.2.9). Именно благодаря этому образуются ре­цептивные поля ON/OFF-типа.

Необходимо отметить, что амакриновые клетки АИ также соединяются между собой. Это происходит в субпластинке b при помощи щелевых контактов. Кроме того, амакриновая клетка АН соединяется с биполярной клеткой колбочки. Благодаря приведенной выше схеме нейронных связей амакриновой клетки АН с биполярной клеткой колбочки и ганглиозными клетками сигналы, исходящие от палочек, ис­пользуются и колбочковой системой при изме­нении степени освещенности (темновые и мезо-пические условия).

Вторым типом амакриновых клеток являют­ся клетки типа А17. Эти клетки относятся к ГАМК-эргическим нейронам [425, 592] и обла­дают широким дендритным полем, что позво­ляет одной клетке объединить до 1000 биполяр­ных клеток палочек. Дендриты амакриновых клеток А17 достигают субпластинки b внутрен­него плексиформного слоя, где и завершаются (рис. 4.2.8, 4.2.9). Эти клетки не образуют си­напсов с другими амакриновыми и ганглиозны­ми клетками и их функцией является только объединение биполярных клеток палочек, обес­печивая конвергенцию сигнала. По этой при­чине амакриновая клетка А17 обладает само­стоятельным рецептивным полем и регулирует уровень чувствительности палочек и биполяр­ных клеток по площади сетчатки, участвуя тем самым в темновой и световой адаптации. Бла­годаря конвергенции сигнала эта клетка очень чувствительна к освещению низкой интенсив­ности.

Третьим типом амакриновых клеток тракта палочек является клетка типа А18, дендрит­ное поле которой распределяется только в суб­пластинке а внутреннего плексиформного слоя (рис. 4.2.9). Эта амакриновая клетка относится к допаминэргическим (выявляется при проведе­нии иммуногистохимических реакций на фер­менты синтеза допамина, тирозин-гидроксила-зы). Отростки клетки типа А18 окружают тела и дендриты амакриновых клеток типа АИ, А8, А17 (рис. 4.2.9). Они также образуют большое количество синапсов с трактами палочек, амак­риновыми и биполярными клетками колбочек. Эти амакриновые клетки отвечают на возбуж-

дение деполяризацией. Предполагают, что до-паминэргическая клетка А18 увеличивает раз­мер рецептивного поля, повышая при этом чув­ствительность ганглиозных клеток в ското-пических условиях. Увеличение рецептивного поля исключительно важно (помимо изменения скорости синтеза пигментов фоторецепторов) в реализации механизмов темновой адаптации.

Система приведенных выше амакриновых клеток обеспечивает не только конвергенцию сигнала, но и его дивергенцию, благодаря об­ратным связям. Степень конвергенции и дивер­генции системы палочек можно проиллюстри­ровать на примере организации сетчатки кошки [314]. Конвергенция сигнала сводится к тому, что приблизительно 1500 палочек передают информацию отдельной ON-бета ганглиозной клетке посредством 100 биполярных клеток палочек, 5 амакриновых клеток типа АИ и 4 биполярных клеток колбочек. Информация к OFF-альфа ганглиозной клетке поступает от 75 000 палочек, 5000 биполярярных клеток па­лочек и 250 амакриновых клеток. Дивергенция палочковой системы сводится к тому, что от­дельная палочка передает информацию двум биполярным клеткам, а от них 5 амакриновым клеткам типа АИ, 8 биполярным клеткам колбо­чек и двум ON-бета ганглиозным клеткам. Бла­годаря существованию дивергентной и конвер­гентной систем обеспечивается объединение и усиление сигнала палочек при очень низком освещении. Чувствительность столь высока, что зрительная система реагирует на един­ственный квант световой энергии. Благодаря наличию связи между палочковой и колбочко­вой системами посредством амакриновых кле­ток, палочковая нейронная система в мезопи-ческих условиях передает свои функции кол-бочковой системе.

Необходимо подчеркнуть и то, что приве­денная выше схема взаимодействия между ней­ронами палочкового тракта является основой формирования рецептивных полей, обеспечи­вающих наиболее важные функции зритель­ной системы — контрастную чувствительность, адаптацию.

Нейронная система колбочек. Нейронная система колбочек обеспечивает наибольшую остроту зрения в фотопических условиях, а так­же обладает способностью цветовосприятия. В определенных условиях (темновые) колбоч-ковая система регистрирует ахроматические сигналы. Первоначально мы охарактеризуем основные закономерности формирования кол-бочковой системы.

Необходимо отметить, что система прохож­дения сигналов от колбочки к ганглиозным клеткам довольно существенно отличается от нейронной системы палочек. Так, одна колбоч­ка образует синапсы с двумя биполярными клетками, в то время как палочка только с одной (рис. 4.2.3, 4.2.8). Благодаря этому уже

420