Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глава 4 ГОЛОВНОЙ МОЗГ И ГЛАЗ.doc
Скачиваний:
107
Добавлен:
07.02.2015
Размер:
11.35 Mб
Скачать

Глава 4. Головной мозг и глаз

затора этот эффект проявляется в виде так называемого «последовательного образа». Наи­более ярким примером существования такого эффекта может служить следующее явление. Если после длительного рассмотрения красного изображения перевести взляд на белую поверх­ность, белая поверхность будет казаться зе­леной, т. е. цвета, дополнительного к красно­му. Особенно часто приходится сталкиваться с явлением последействия движения. Например, при вращении колеса со спицами с определен­ной скоростью возникает впечатление враще­ния колеса в обратном направлении. Явление последействия указывает на существование од­новременно двух антагонистических сенсорных систем, уравновешенных в обычных условиях. Можно предположить, что при длительном воз­буждении одной из систем световым сигналом ее чувствительность снижается, а антогонисти-ческая система сохраняет свою чувствитель­ность. Если предположить, что детектор крас­ного цвета в приведенном выше примере спа­рен с детектором зеленого цвета, то оба они одинаково реагируют на белый цвет и на вы­ходе пары нет ничего, кроме фона. Предпо­ложим теперь, что глаз фиксирует красную поверхность в течение некоторого времени, в результате чего рецепторы красного цвета «утомляются». Если перевести взгляд на белую поверхность, то рецепторы зеленого будут реа­гировать нормально, а рецепторы красного да­дут ослабленную реакцию. Таким образом, свет будет восприниматься как зеленый. Необходи­мо отметить, что приведенное объяснение лег­ло в основу оппонентной теории восприятия цвета, на чем мы остановимся несколько ниже. Наличие детекторов, представляющих собой организованные определенным образом рецеп­тивные поля и обладающих антагонистически­ми свойствами, которые реагируют на стимулы различной формы (линии, щели, углы и т. п.) и цвет, было позднее обнаружено нейрофизио­логами на уровне сетчатки, наружных колен­чатых тел и различных участков коры головно­го мозга при помощи разработанных методов электрофизиологии, позволяющих снимать по­тенциал отдельного нейрона. На основе этих исследований теоретически разработаны схемы нейронных цепей, удовлетворяющие требовани­ям детекторов различных характеристик изоб­ражения при его анализе. В последующем ней-рогистологи при помощи световой, электронной микроскопии и методов гистохимии выявили особенности этих цепей, заключающиеся в оп­ределенной связи между нейронами различных типов, характере контактов между ними, а так­же в использовании нейронами при передаче нервного импульса различных нейромедиато-ров. Основополагающим понятием, возникшим в результате приведенных выше наблюдений, явилось понятие «рецептивное поле». Ранее мы неоднократно упоминали термин «рецептивное

поле». Об особенностях функционирования ре­цептивных полей мы сейчас остановимся более подробно.

Рецептивное поле на уровне сетчатки пред­ставляет собой совокупность точек сетчатки (фоторецепторных клеток), в пределах которой зрительный стимул вызывает возбуждение или торможение одного нейрона следующего (более высокого) порядка, в частности ганглиозной клетки.

Еще в 30-е годы прошлого столетия Hart-line [231, 232] развил концепцию рецептивно­го поля при изучении глаза краба и лягушки. В дальнейшем были выполнены классические эксперименты на кошках [319, 320], сформиро­вавшие базу для последующих исследований зрительной системы млекопитающих.

Как было указано выше, возможность по­добных экспериментов появилась в связи с соз­данием методик подведения микроэлектрода непосредственно к одному нейрону. Именно та­ким образом регистрируется потенциал дей­ствия ганглиозных клеток сетчатки, нейронов наружных коленчатых тел и нейронов зритель­ной коры головного мозга во время освещения сетчатки паттернами различной формы и плот­ности энергии (рис. 4.2.5). Это позволило ис­следователям анализировать как параметры зрительных стимулов, возбуждающих или тор­мозящих нейроны, так и особенности реакции нейронной системы.

Используя эту методику, первое, что обна­ружили Kuffler и Hartline [320], это сущест­вование двух категорий ганглиозных клеток. Клетки ON-типа возбуждались при освещении, а OFF-типа возбуждались при отсутствии осве­щения. Причем участки сетчатки, отвечающие противоположной реакцией, располагались ря­дом, чаще в виде кольца. Центральная часть такой окружности отвечала на стимул одним типом реакции, а периферия противоположной. При регистрации потенциала действия ганг­лиозной клетки световое пятно, помещенное

Рис. 4.2.5. Схема проведения электрофизиологических исследований функциональной активности различных отделов зрительного пути (объяснения в тексте):

1 — зрительное поле; 2 — зрительный тракт; 3 — наружное ко­ленчатое тело; 4 — электрод в зрительной коре

Функциональная анатомия зрительной системы

417

в центр рецептивного поля, вызывает усиление активности клетки, т. е. формируется ON-ответ (рис. 4.2.6, см. цв. вкл.). Когда такое же не­большое световое пятно помещают вне рецеп­тивного поля, нейрон уменьшат свою актив­ность (OFF-ответ). Подобного типа рецептив­ное поле называется ON-центр рецептивным полем. Существуют и OFF-центр рецептивные поля, особенностью которых является тормо­жение ганглиозной клетки при освещении цент­ра рецептивного поля.

Куфлером изучались также рецептивные поля с целью определения «оптимального сиг­нала», т. е. сигнала в наибольшей степени воз­буждающего ганглиозную клетку. Оказалось, что самым сильным сигналом для ON-центр ганглиозной клетки было световое пятно, пол­ностью выполняющее центр рецептивного поля (см. рис. 4.2.6). Таким же образом наиболее оптимальным для тормозного сигнала явилось освещение периферии рецептивного поля сти­мулом, имеющим вид кольца. После подобного торможения в момент снятия светового сиг­нала нейрон формировал потенциал действия.

Установлено также, что если освещать ре­цептивное поле большим световым пятном, на­крывающим как центр, так и периферию поля, возникает значительно более слабый ответ, чем при использовании маленького пятна, освещаю­щего только центр. Таким образом, тормозная реакция периферии рецептивного поля ослабля­ла или даже устраняла центральное возбужде­ние. Приведенные выше реакции рецептивного поля связаны с особым типом обратных связей тормозного характера между нейронами сетча­той оболочки (рис. 4.2.7).

Из приведенных выше фактов становится ясно, что в основе большинства электрофизио­логических особенностей рецептивных полей лежат явления возбуждения и торможения, морфологическим субстратом которых являют­ся обратные связи возбуждающего или тор­мозного характера между рядом расположен­ными нейронами. Именно наличием таких свя­зей между нейронами с формированием ре­цептивных полей можно объяснить феномены, приведенные на рис. 4.2.4.

В настоящее время известно большое коли­чество разнообразных типов реакций зритель­ной системы, основой которых является функ­ционирование рецептивных полей. Существова­ние рецептивных полей сетчатки определяет фундаментальные функциональные ее свойства, такие как обеспечение одновременного и после­довательного зрительного контраста, острота зрения, движение объекта, световая и темно-вая адаптация, обработка информации о цвете объекта. При этом указывают на наличие до­вольно сложной организации рецептивных по­лей, выполняющих ту или иную функцию. На уровне сетчатки доказано наличие рецептивных полей, реагирующих на форму объекта (выде-


Тормозные синапсы


Окружение


и и

Рис. 4.2.7. Схема обратных свезей между нейронами сетчатки, формирующими ргцептивные поля (объясне­ние в тексте)

ляя такие признаки, как наличие и длина ли­ний, наличие углов и т. п.), его движение, спек­тральную характеристику объекта. Благодаря сложному взаимодействию нейронов уже в сет­чатке зрительная информация обрабатывается, кодируется и по зрительному нерву передается наружному коленчатому телу [592]. Структура рецептивных полей сохраняется и на уровне наружных коленчатых тел, а также в зритель­ной коре головного мозга. Именно подобная организация обеспечивает передачу информа­ции по принципу «точка к точке». Этот принцип сводится к тому, что фоторецепторы опреде­ленных участков сетчатой оболочки передают информацию ганглиозным клеткам, а затем ней­ронам наружного коленчатого тела и зритель­ной коры, сохраняя при этом топографическое пространственное расположение рецептивных полей. Это топографическое распределение не линейное. Примером тому является значитель­но большее представительство макулярной об­ласти в наружном коленчатом теле и коре отно­сительно остальной части сетчатки.

В настоящее время достаточно точно вы­явлены морфологические основы нескольких нейронных сетей сетчатки, определяющие их различные функции. Это система палочек, сис­тема колбочек, «карликовая» система фовео-лярной области, тракт S-колбочек и обрат­ные связи. Особенности организации этих се­тей сводятся к наличию определенных типов нейронов, а также синаптических соединений, использующих различные медиаторы.

418