
- •Глава 4
- •Глава 4. Головной мозг и глаз
- •4.1.1. Конечный (концевой) мозг
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головном мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.1.2. Промежуточный мозг
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и гааз
- •4.1.3. Средний мозг
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.1.4. Задний мозг
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.1.5. Продолговатый мозг
- •Глава 4. Головном мозг и глаз
- •4.1.6. Спинной мозг
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.1.7. Кровоснабжение мозга
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.1.8. Оболочки мозга
- •Глава 4. Головной мозг и глаз
- •4.1.9. Цистерны мозга
- •Глава 4. Головной мозг и гааз
- •4.1.10. Желудочки мозга
- •Глава 4. Головной мозг и глаз
- •4.1.12. Гемато-энцефалический барьер
- •Глава 4. Головной мозг и глаз
- •4.2.1. Функциональная анатомия сетчатки
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.2.2. Зрительный нерв
- •Глава 4. Головной мозг и глаз
- •4.2.3. Зрительный перекрест
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.2.4. Зрительный тракт
- •Глава 4. Головной мозг и глаз
- •4.2.5. Наружное коленчатое тело
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головном мозг и глаз
- •10 И 16 17 Рис. 4.2.41. Горизонтальный срез мозга на уровне расположения зрительной лучистости:
- •Глава 4. Головной мозг и глаз
- •4.2.7. Зрительная кора
- •Глава 4. Головной мозг и глаз
- •12 16 Рис. 4.2.44. Внутренняя и нижняя поверхности полушария головного мозга:
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и гааз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.3.1. Обонятельный нерв
- •4.3.2. Зрительный нерв и зрительный путь
- •4.3.3. Глазодвигательный нерв
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.3.4. Блоковый нерв
- •Глава 4. Головной мозг и глаз
- •4.3.5. Отводящий нерв
- •Глава 4. Головной мозг и глаз
- •4.3.6. Тройничный нерв
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.3.7. Лицевой нерв
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.3.8. Преддверно-улитковый нерв
- •4.3.9. Языкоглоточный нерв
- •4.3.10. Блуждающий нерв
- •4.3.11. Добавочный нерв
- •4.3.12. Подъязычный нерв
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.4.2. Модели функции наружных мышц глаза
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.4.3. Нейронный контроль движений глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.5.2. Парасимпатическая система
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •4.5.3. Симпатическая система
- •Глава 4. Головной мозг и гааз
- •Глава 4. Головной мозг и глаз
- •4.5.4. Зрачковый рефлекс
- •Глава 4. Головной мозг и глаз
- •4.5.5. Рефлекс при прекращении освещения глаза («темновой рефлекс»)
- •4.5.6. Конвергентно-аккомодацион-но-зрачковый рефлекс
- •Глава 4. Головной мозг и глаз
- •4.5.8. Цилиоспинальный рефлекс
- •Глава 4. Головной мозг и гааз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и гааз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и глаз
- •Глава 4. Головной мозг и гааз
- •Глава 4. Головной мозг и глаз
Глава 4. Головной мозг и глаз
Спинномозговая
жидкость выполняет многочисленные
функции. Основными из них являются
поддержание нормального гомеостаза
нейронов
и глии мозга, участие в их метаболизме
(удаление
метаболитов), механическое предохранение
головного мозга. СМЖ образует
гидростатическую
оболочку вокруг мозга и его нервных
корешков и сосудов, которые свободно
взвешены в жидкости. Благодаря этому
уменьшается
натяжение нервов и сосудов. СМЖ
обладает и интегративной функцией,
благодаря
переносу гормонов и других биологически
активных веществ.
При накоплении избыточных количеств СМЖ развивается состояние, называемое гидроцефалией. Причиной этого может быть слишком интенсивное образование СМЖ в желудочках или чаще патологический процесс, создающий препятствие нормальному току СМЖ и ее выходу из полостей желудочков в субарах-ноидальное пространство, что может происходить при воспалительных процессах, сопровождающихся закупоркой отверстий Люшка или облитерацией третьего желудочка. Другой причиной этого может явиться атрезия, или закупорка водопровода.
При этом развиваются разнообразные симптомы поражения как головного мозга, так и глазного яблока. Так, при врожденном или приобретенном стенозе сильвиевого водопровода увеличивается третий желудочек, вызывая нарушения как сенсорных, так и двигательных функций глаза. Это может быть битемпораль-ная гемианопсия, нарушение взора кверху, нистагм и нарушение зрачкового рефлекса. Увеличение внутричерепного давления часто приводит к отеку диска зрительного нерва и позже ведет к атрофии зрительного нерва. Точный механизм этого явления пока полностью не понят. Предполагают, что повышение давления СМЖ в субарахноидальном простаранстве мозга приводит к увеличению внутричерепного давления и давления в субарахноидальном пространстве зрительного нерва. При этом сдавливаются вены и нарушается отток венозной крови.
4.1.12. Гемато-энцефалический барьер
Эрлихом в 1885 г. обнаружено, что некоторые анилиновые красители, введенные в вену, окрашивают все ткани тела, за исключением мозга. Впоследствии была сформулирована концепция, согласно которой между кровью и мозгом существует некий барьер, препятствующий проникновению в мозг ряда веществ, находящихся в крови. В 1960-е годы благодаря использованию электронной микроскопии была выявлена структурная основа гемато-энцефали-ческого барьера, а именно особая структурная организация эндотелия кровеносных сосудов
мозга. В последующих исследованиях были выявлены и другие особенности.
Первое анатомическое образование, которое может влиять на проникновение веществ в мозг, — это капилляры мозга. Эндотелиальные клетки капилляров мозга соединены друг с другом посредством переплетающихся пальцевидных выростов, и между ними не существует промежутков. Связаны эндотелиоциты и мощными «плотными» соединениями, образование которых индуцируется контактом с астроцита-ми (рис. 4.1.50). Эндотелий препятствует переносу одних веществ, содержит специфические транспортные системы для других веществ и метаболически изменяет другие вещества, превращая их в соединения, неспособные проникать в мозг [3].
Барьерными функциями обладает и базаль-ная мембрана капилляров.
Снаружи от базальной мембраны, окружающей эпителиальные клетки, нет расширенного периваскулярного пространства.
Другой анатомической структурой, находящейся между нейроном и кровью, является астроцит с характерными отростками-«ножка-ми», которые охватывают 85% поверхности капилляров. Таким образом, в мозге между цитоплазмой нейрона и кровью лежит целый ряд мембран, определяющих в совокупности судьбу того или иного циркулирующего в крови вещества.
Все вещества можно разделить на 3 категории в зависимости от их способности проникать в мозг.
1. Вещества, которые совсем не проходят через различные клеточные мембраны. Это могут быть очень крупные молекулы или вещества, чужеродные для организма.
Рис. 4.1.50. Схематическое изображение структурной
организации сосудов мозга и окружающих структур,
обеспечивающих функционирование гемато-энцефали-
ческого барьера:
/ — астроцит; 2 — нейрон; 3 — эндотелий; 4 — перицит
Анатомия головного мозга
413
Вещества, проходящие через мембраны путем пассивной диффузии. К ним относятся многочисленные соединения, способность кото рых проникать в нейроны в какой-то мере зави сит от ряда физических констант (раствори мость в липидах, степень ионизации, степень связывания с белками плазмы).
Вещества, поступающие в клетку при участии переносчиков. К этой группе веществ относится большая часть физиологических суб стратов, обычно участвующих в процессах об мена нейронов и клеток глии.
Было показано, что к каждой из этих групп относятся самые разнообразные соединения.
Ко второй группе относятся спирт и стероидные гормоны, которые растворимы в липидах. К этой же группе принадлежат кальций и гормоны щитовидной железы.
К третьей группе веществ, для которых существуют специальные системы переносчиков, принадлежат аминокислоты и, возможно, пури-новые и пиримидиновые основания. Скорость их проникновения в мозг зависит от физиологических потребностей нейронов и при определенных условиях может увеличиваться.
Основным биологическим значением гемато-энцефалического барьера является жесткое поддержание постоянства внутренней среды головного мозга, что необходимо для стабильного выполнения функций нейронами. Именно из-за наличия этого барьера существуют и определенные отличия в возникновении и развитии патологических процессов головного мозга.
Необходимо подчеркнуть, что основные принципы функционирования гемато-энцефалическо-го барьера распространяются и на глазное яблоко (гемато-офтальмический барьер), о чем более подробно изложено в соответствующем разделе.
4.2. ФУНКЦИОНАЛЬНАЯ
АНАТОМИЯ ЗРИТЕЛЬНОЙ СИСТЕМЫ
Восприятие окружающего нас мира осуществляется посредством ощущений, вызванных световой энергией, которая характеризуется чрезвычайно широкими изменениями своих физических характеристик. Это изменение интенсивности (мощность), спектральных характеристик, длительности воздействия. Зрительная система способна адаптироваться к подобным изменениям. Примером широких возможностей адаптации зрительной системы является хотя бы тот факт, что наш глаз регистрирует единичные фотоны в темноте. В то же время мы четко видим и при ярком солнечном освещении, т. е. тогда, когда на сетчатку попадает более 1014 фотонов в секунду.
Помимо интенсивности поступающей в глаз световой энергии зрительная система должна
реагировать и на временные характеристики поступающей информации, причем способом, позволяющим практически мгновенно интерпретировать динамически изменяющуюся поступающую информацию. Для этого существуют механизмы, выбирающие наиболее важную информацию («редакционная способность»). На самых высоких уровнях обработки информации, т. е. в коре головного мозга, анализируются разнообразные качества окружающего мира, расцениваемые нами как зрительное восприятие. Это одновременный анализ движения, цвета, текстуры и глубины расположения объектов, определение комбинаций простых предметов и т. д. [341].
Субъективно зрительные образы кажутся устойчивыми и «плавно» изменяются во времени и пространстве. В то же время видимые нами объекты являются лишь незначительной частью бесконечного разнообразия окружающих нас изображений. Зрительная система постоянно производит выбор изображений. При этом она сохраняет, интегрирует, дифференцирует и стирает часть поступающей информации, приводя к восприятию устойчивых зрительных образов. Таким образом, функционирует зрительная система одновременно как «дифференциатор» и «интегратор». Для интерпретации постоянно изменяющихся зрительных образов используются механизмы непрерывного поиска инвариантностей изображений и их взаимоотношений в пределах сетчатки.
Сложная структура зрительного анализатора развилась именно для анализа обширной зрительной информации наиболее эффективным путем, т. е. быстро и с наибольшей точностью. У многих животных большая часть мозга специализирована на анализе именно зрительной информации. Особое значение зрительной системы для человека можно проиллюстрировать хотя бы следующим фактом. Так, количество аксонов в зрительном нерве колеблется примерно от 700 тыс. до 1,4 млн, в то время как в слуховом нерве их всего лишь 31 тыс.
Зрительная система человека состоит из сетчатки, зрительных нервов, зрительного перекреста, зрительного тракта, наружных коленчатых тел, зрительной лучистости, зрительной и ассоциативной коры, а также комиссур-ных связей, соединяющих полушария головного мозга. Эта специализированная центростремительная система, имеющая название зрительного пути, располагается в горизонтальной плоскости и пересекает главные афферентные и эфферентные (сенсорные и двигательные) системы полушарий мозга (рис. 4.2.1, см. цв. вкл.; 4.2.2). Передняя часть зрительного пути плотно прилежит к сосудистой системе и костным структурам основания мозга, а задняя часть проходит в непосредственной близи от бокового желудочка мозга, простирающегося практически на всем протяжении мозга. Благо-
414