- •ОСНОВНЫЕ ПРИНЦИПЫ И ПОНЯТИЯ 3D МОДЕЛИРОВАНИЯ В T-FLEX CAD 3D
- •Введение в 3D моделирование
- •Основные топологические элементы
- •Основные геометрические понятия в системе T-FLEX CAD 3D
- •Элементы и операции в 3D
- •3D элементы построения
- •Основные трёхмерные операции
- •Операции для работы с листовым металлом
- •Операции для работы с гранями
- •Операции по вставке и копированию 3D элементов
- •Операции создания 3D массивов
- •Команды для анализа геометрии
- •Вспомогательные команды и операции
- •2D проекции
- •Визуализация трёхмерных объектов
- •Анимация трёхмерной модели
- •Организация твердотельного моделирования в T-FLEX CAD 3D
- •Общие рекомендации перед созданием 3D модели
- •Параметризация. Регенерация модели
- •Методы создания трёхмерной модели
- •Как работать в системе T-FLEX CAD 3D
- •Получение справки
- •Создание нового документа. Использование шаблона-прототипа
- •Работа мышкой. Контекстное меню
- •Ввод команд (с клавиатуры, с помощью пиктограмм, из текстового меню)
- •Задание параметров создаваемого элемента
- •Предварительный просмотр
- •Команды T-FLEX CAD 3D по группам
- •Выбор элементов. Настройка
- •Выбор элементов
- •Поиск элементов
- •Открытие новых окон
- •Манипулирование моделью в 3D окне
- •Окно «3D модель»
- •Окно «Диагностика»
- •Оптимальное расположение служебных окон
- •Панели инструментов
- •Настройки
- •КРАТКИЙ ВВОДНЫЙ КУРС ПО СОЗДАНИЮ 3D МОДЕЛИ
- •Основной метод создания 3D модели
- •Создание вспомогательных элементов
- •Создание первой операции вращения
- •Создание отверстий
- •Создание сглаживания
- •Создание чертежа
- •Метод «От чертежа к 3D модели»
- •РАБОТА С ОКНОМ 3D ВИДА
- •Основные положения
- •Методы визуализации 3D сцены
- •3D сцена
- •Активная камера
- •Вращение 3D сцены
- •Автоматическое вращение 3D сцены
- •Центр вращения 3D сцены
- •Метод проецирования
- •Автомасштабирование
- •Плоскость обрезки
- •Параметры 3D вида
- •Вызов команд управления 3D видом с помощью мыши
- •ОБЩИЕ ПАРАМЕТРЫ 3D ЭЛЕМЕНТОВ
- •Общесистемные параметры
- •Закладка «Общие»
- •Закладка «Преобразование»
- •РАБОЧИЕ ПЛОСКОСТИ
- •Начало работы с рабочими плоскостями
- •Рабочие плоскости и 2D чертёж
- •Работа с активной рабочей плоскостью
- •Активизация рабочей плоскости
- •Управление активной рабочей плоскостью
- •Создание рабочих плоскостей
- •Создание рабочей плоскости параллельно геометрической плоскости
- •Создание рабочей плоскости, проходящей через 3D точку
- •Создание рабочей плоскости, проходящей через 3D линию
- •Создание рабочей плоскости, перпендикулярной 3D кривой
- •Создание рабочей плоскости, касательной к поверхности
- •Выбор начала координат рабочей плоскости
- •Создание копии рабочей плоскости
- •Создание рабочей плоскости на основе локальной системы координат
- •Создание стандартной рабочей плоскости (в 3D окне)
- •Создание стандартной рабочей плоскости (в 2D окне)
- •Создание рабочей плоскости на основе 2D проекции
- •Создание рабочей плоскости для вспомогательного 2D вида
- •Изменение размера рабочей плоскости
- •Параметры рабочих плоскостей
- •Закладка «Рабочая плоскость»
- •РАБОЧИЕ ПОВЕРХНОСТИ
- •Основные положения
- •Этапы создания рабочей поверхности
- •Параметрическая область
- •Фиксированный параметр рабочей поверхности
- •Система координат, относительно которой задаётся рабочая поверхность
- •Пример использования рабочей поверхности
- •Правила создания рабочих поверхностей
- •3D УЗЛЫ
- •Способы создания узлов
- •Использование манипулятора при создании 3D узла
- •Основные способы создания узла на 3D элементе или относительно 3D элемента
- •Специальные способы создания узла на основе существующих 3D элементов
- •Создание узла в абсолютных координатах
- •Создание узла по двум проекциям
- •3D ПРОФИЛИ
- •Основные положения. Типы профилей
- •Геометрия профиля
- •Типы профилей
- •Профили на основе 2D элементов
- •Профиль на основе штриховки
- •Профиль на основе текста
- •Профиль на основе линий изображения на рабочей плоскости
- •Автоматическое создание профилей на основе 2D элементов (на активной рабочей плоскости)
- •Профили на основе 3D элементов
- •Профиль на основе цикла или грани
- •Проецирование профиля на грань или тело
- •Копирование 3D профиля
- •3D профиль - эквидистанта
- •Наложение профиля на грань или тело
- •Построение развёртки линейчатой грани
- •Построение развёртки цилиндрической грани
- •Построение развёртки конической грани
- •Построение развёртки набора граней
- •Придание толщины плоскому профилю
- •Создание 3D профилей
- •Создание 3D профиля на основе 2D штриховки или текста
- •Создание 3D профиля на основе линий изображения на рабочей плоскости
- •Автоматическое создание профилей при работе с активной рабочей плоскостью
- •Создание 3D профиля на основе цикла или грани
- •Создание профиля - проекции существующего профиля на грань или тело
- •Копирование 3D профиля
- •Создание 3D профиля - эквидистанты
- •Наложение профиля на грань или тело
- •Придание толщины плоскому профилю
- •Параметры 3D профилей
- •ЛОКАЛЬНЫЕ СИСТЕМЫ КООРДИНАТ
- •Правила создания локальных систем координат
- •Определение начала координат ЛСК
- •Определение направления оси X ЛСК
- •Определение направления оси Y ЛСК
- •Доворот оси X ЛСК до ближайшей точки выбранной поверхности
- •Перемещение ЛСК до касания с поверхностью
- •Изменение ориентации осей локальной системы координат
- •Создание локальных систем координат
- •Параметры локальных систем координат
- •3D ПУТИ
- •Способы создания 3D путей
- •Создание 3D путей на основе 3D элементов
- •Создание 3D пути как сплайна по 3D точкам
- •3D путь по связанным рёбрам
- •3D путь по последовательности 3D путей
- •3D путь как проекция 3D пути на грань или тело операции
- •Создание копии 3D пути
- •3D путь как линия очерка
- •Создание эквидистанты к 3D пути
- •Создание 3D пути на основе сечения тела плоскостью
- •Создание 3D пути с параметрическим изменением 3D точки
- •3D пути на основе 2D элементов
- •Создание 3D пути на основе контура штриховки
- •Создание 3D пути по 2D путям
- •Создать 3D путь по двум проекциям
- •ПУТЬ ТРУБОПРОВОДА
- •Создание 3D пути для трубопровода
- •Плоскость черчения
- •СЕЧЕНИЕ
- •Основные способы создания 3D сечений
- •3D сечение на основе 3D вида
- •3D сечение на основе рабочей плоскости
- •Создание 3D сечения на основе 2D проекции
- •Применение сечения к 3D модели
- •Создание сечения
- •Создание сечения по 3D виду
- •Создание сечений на основе рабочей плоскости
- •Создание сечения на основе 2D проекции
- •Задание параметров 3D сечения
- •2D ПРОЕКЦИИ
- •Создание 2D проекции
- •Построение стандартных видов
- •Создание дополнительного вида
- •Создание разреза или сечения
- •Создание местного разреза
- •Построение проекции на рабочей плоскости
- •Общий случай создания 2D проекции
- •Выбор элементов для проецирования
- •Создание разрыва на проекции
- •Особенности построения и дальнейшее использование 2D проекций
- •Параметры 2D проекции
- •Закладка «Общие»
- •Закладка «Основные параметры»
- •Закладка «Линии»
- •Редактирование 2D проекции
- •ВЫТАЛКИВАНИЕ
- •Основные понятия. Возможности операции
- •Контур выталкивания
- •Направление выталкивания
- •Задание длины выталкивания
- •Типы границ
- •Дополнительные возможности выталкивания
- •Создание операции выталкивания
- •Выбор контура выталкивания
- •Задание направления выталкивания
- •Задание длины выталкивания
- •Задание дополнительных возможностей операции
- •ВРАЩЕНИЕ
- •Основные понятия. Возможности операции
- •Контур вращения
- •Ось вращения
- •Угол вращения контура
- •Дополнительные возможности операции вращения
- •Создание операции вращения
- •Выбор контура вращения
- •Задание оси вращения
- •Задание начального угла и угла поворота
- •БУЛЕВА ОПЕРАЦИЯ
- •Основные понятия. Возможности операции
- •Типы булевой операции
- •Операнды булевой операции
- •Результаты булевых операций
- •Глобальные и локальные булевы операции
- •Выборочные булевы операции
- •Создание булевой операции
- •Основные параметры операции
- •Дополнительные параметры операции
- •СГЛАЖИВАНИЕ РЁБЕР
- •Основные понятия. Возможности операции
- •Виды сглаживания
- •Особенности сглаживания группы рёбер
- •Специальные функции сглаживания рёбер
- •Правила задания операции
- •Правила выбора объектов
- •Задание параметров операции. Использование манипуляторов
- •СГЛАЖИВАНИЕ ГРАНЕЙ
- •Основные понятия. Возможности операции
- •Направляющая
- •Типы сглаживания
- •Режимы сглаживания
- •Формы поверхности сглаживания
- •Специальные возможности
- •Граничные условия
- •Правила задания операции
- •Работа с манипуляторами и декорациями
- •Выбор набора граней
- •Выбор режима сглаживания
- •Выбор типа сглаживания
- •Задание формы поперечного сечения
- •Задание граничных условий
- •Настройка специальных возможностей
- •СГЛАЖИВАНИЕ ТРЁХ ГРАНЕЙ
- •Основные понятия. Возможности операции
- •Общие концепции операции
- •Дополнительные возможности
- •Правила задания операции
- •Выбор набора граней
- •Выбор направляющей
- •Настройка специальных возможностей
- •ПО СЕЧЕНИЯМ
- •Основные понятия. Возможности операции
- •Сечения
- •Точки соответствия
- •Направляющие
- •Граничные условия
- •Совместимость со старыми версиями
- •Правила задания операции «По сечениям»
- •Выбор сечений
- •Задание точек соответствия
- •Выбор направляющих
- •Задание граничных условий
- •Задание дополнительных параметров операции
- •Параметры сглаживания
- •Параметры оптимизации
- •ТЕЛО ПО ТРАЕКТОРИИ
- •Основные возможности операции
- •Контур
- •Контроль над ориентацией контура
- •Траектория и направляющие
- •Коррекция исходного положения контура
- •Кручение контура
- •Масштабирование контура
- •Создание тела по направляющим
- •Методы вычисления вспомогательных векторов с использованием направляющих
- •Правила задания операции
- •Выбор способа ориентации контура
- •Выбор контура
- •Выбор траектории
- •Задание коррекция исходного положения контура
- •Задание закона кручения контура
- •Задание закона масштабирования контура
- •Задание тела по направляющим
- •Дополнительные возможности операции
- •ТЕЛО ПО ПАРАМЕТРАМ
- •Правила создания операции
- •Способ свободной ориентации копии
- •Пример 1
- •Пример 2
- •Способ ориентации копии по путям или поверхностям
- •Пример 3
- •ТРУБОПРОВОД
- •Задание операции трубопровод
- •3D ИЗОБРАЖЕНИЯ
- •Создание 3D изображений
- •Использование 3D изображений для создания планировок
- •Параметры 3D изображений
- •Закладка «Операция»
- •Закладка «Преобразование»
- •ВНЕШНЯЯ МОДЕЛЬ
- •Режимы работы с внешней моделью
- •Вставка внешней модели
- •3D КОПИИ
- •Основные положения и возможности операции
- •Выбор исходного тела (операции)
- •Исходная и целевая системы координат
- •Способы копирования
- •Создание копии
- •Выбор 3D операции
- •Выбор исходной системы координат
- •Выбор целевой системы координат
- •Задание параметров операции
- •Подтверждение создания копии
- •МАССИВЫ
- •Типы массивов. Особенности каждого типа
- •Массив элементов построения
- •Массив Тел и массив операций
- •Массив граней
- •Виды массивов. Особенности массивов каждого вида
- •Линейный массив
- •Круговой массив
- •Массив по точкам
- •Массив по пути
- •Параметрический массив
- •Ограничения и исключения
- •Ограничения
- •Исключения
- •Изменение числа копий в массиве. Привязка к элементам массива
- •Создание 3D массивов
- •Выбор типа массива и исходных объектов массива
- •Задание направляющих элементов и основных параметров массива
- •Задание дополнительных параметров массива
- •Задание ограничений
- •Задание исключений
- •3D СИММЕТРИЯ
- •Создание симметричного тела
- •ОТСЕЧЕНИЕ
- •Задание операции отсечения
- •Создание отсечения
- •Создание рассечения
- •Примеры создания операции
- •Рассечение тела на две части
- •РАЗДЕЛЕНИЕ
- •Создание разделения
- •Параметры разделения
- •УКЛОН ГРАНЕЙ
- •Основные понятия и возможности операции
- •Направление уклона
- •Неподвижное ребро
- •Отсчёт угла уклона
- •Неподвижная грань
- •Использование рабочей плоскости
- •Уклон всех смежных граней
- •Совместная обработка граней
- •Методы уклона граней
- •Уклон граней по смещению
- •Использование нескольких неподвижных граней/ребер
- •Обработка стыка между уклоняемой и смежной с ней гранями
- •Обработка стыка между двумя уклоняемыми гранями
- •Ступенчатый уклон
- •Разбиение грани
- •Создание уклона граней
- •Основные параметры операции
- •Дополнительные параметры операции
- •УКЛОН ТЕЛА
- •Основные понятия и возможности операции
- •Направление уклона
- •Исходные ребра
- •Разделяющее тело
- •Исходные грани
- •Угловое соединение
- •Исправление вогнутых углов
- •Обработка стыков уклоненных граней
- •Подрез уклона
- •Замена ребер
- •Создание уклона тела
- •Основные исходные данные операции
- •Дополнительные параметры операции
- •ОБОЛОЧКА
- •Основные положения
- •Создание оболочки
- •Выбор удаляемой грани или тела
- •Выбор граней, для которых толщина стенки задается отдельно
- •Дополнительные параметры операции
- •ПРУЖИНЫ
- •Основные сведения и возможности операции
- •Создание операции пружина
- •Задание оси пружины
- •Задание параметров операции пружина
- •Выбор стартовой точки положения профиля пружины
- •Задание поджима и зашлифовки концов пружины
- •Задание выравнивания пружины по начальной и конечной точкам
- •СПИРАЛИ
- •Основные сведения и возможности операции
- •Ось спирали
- •Профиль спирали и его ориентация в пространстве
- •Основные параметры спирали
- •Начальное положение профиля спирали
- •Сглаживание
- •Задание операции спираль
- •Задание оси спирали
- •Выбор профиля спирали
- •Задание ориентации 3D профиля в пространстве
- •Задание параметров спирали
- •Выбор стартовой точки положения профиля спирали
- •РЕЗЬБА
- •Основные понятия. Возможности операции
- •Создание резьбы
- •Задание основных параметров резьбы
- •Задание отступов
- •Отображение резьбы на 2D проекциях
- •Резьбовые соединения
- •ОТВЕРСТИЯ
- •Основные понятия и возможности операции
- •Шаблоны отверстий
- •Точки привязки отверстий
- •Соосные отверстия
- •Ориентация отверстий
- •Глубина отверстия
- •Отверстия через несколько тел
- •Создание отверстий
- •Выбор типа и основных геометрических параметров отверстий
- •Задание точек привязки отверстий
- •Задание глубины отверстия
- •Создание отверстий через несколько тел одновременно
- •Выбор отверстия для изменения положения и ориентации отверстия
- •Изменение точки привязки отверстия
- •Изменение ориентации отверстия. Создание соосного отверстия
- •РАБОТА С ЛИСТОВЫМ МЕТАЛЛОМ
- •Подготовительные операции при работе с листовым металлом
- •Общие параметры листового металла
- •Заготовка для листовых операций
- •Гибка. Основные понятия и возможности
- •Виды гибки
- •Общие параметры гибки
- •Основные понятия гибки
- •Сгибание
- •Отгибание
- •Приклеивание
- •Уменьшение язычка
- •Ослабления напряжений в металле
- •Дополнительные операции при работе с листовым металлом
- •Разгибание детали
- •Повторная гибка развёрнутой заготовки
- •Библиотека часто встречающихся элементов штамповки
- •Правила задания операций листовой штамповки
- •Задание параметров листовых операций
- •Создание заготовки
- •Создание различных видов гибки
- •Разгибание
- •Повторная гибка
- •Создание типовых операций листовой штамповки
- •ОПЕРАЦИИ ДЛЯ РАБОТЫ С ГРАНЯМИ
- •Сшивка
- •Работа с командой
- •Выбор сшиваемых поверхностей
- •Задание дополнительных параметров
- •Разделение граней
- •Работа с командой
- •Выбор метода разделения
- •Выбор разделяемых объектов
- •Выбор разделяющих объектов
- •Задание направления
- •Удаление граней
- •Основные положения
- •Работа с командой
- •Выбор удаляемых граней
- •Выбор способа удаления
- •Дополнительные параметры
- •Отделение граней
- •Основные положения
- •Работа с командой
- •Выбор отделяемых граней
- •Указание методов обработки исходных и отделяемых граней
- •Замена граней
- •Основные положения
- •Работа с командой
- •Выбор заменяемых и заменяющих граней
- •Задание дополнительных параметров
- •Изменение граней
- •Основные положения
- •Работа с командой
- •Выбор изменяемых граней
- •Указание параметров граней
- •Задание дополнительных параметров
- •Перемещение граней
- •Работа с командой
- •Задание перемещаемых граней
- •Задание параметров преобразования
- •Расширение поверхности
- •Работа с командой
- •Выбор расширяемого объекта
- •Выбор рёбер
- •Задание величины продления грани
- •Задание дополнительных параметров
- •Заполнение области
- •Работа с командой
- •Выбор области заполнения
- •Выбор листового тела
- •Задание дополнительных параметров
- •3D СБОРКИ
- •Общие сведения
- •Что такое трехмерная сборочная модель?
- •Методы проектирования сборок
- •Создание сборки из 3D фрагментов
- •Принцип работы механизма 3D фрагментов
- •Правила работы с 3D фрагментами
- •Подготовка документа T-FLEX CAD к использованию в качестве 3D фрагмента.
- •Проектирование сборок «Сверху вниз»
- •Принцип работы
- •Правила создания Детали
- •Сопряжения и степени свободы
- •Что такое сопряжение?
- •Типы сопряжений
- •Создание сопряжений
- •Приёмы работы с готовыми сопряжениями
- •Конфигурации
- •Что такое Конфигурация?
- •Работа с Конфигурациями
- •Деталировка
- •Разборка
- •Выполнение команды
- •Как правильно задать преобразования для разборки
- •АДАПТИВНЫЕ 3D ФРАГМЕНТЫ
- •Подготовка адаптивного 3D фрагмента
- •Вставка адаптивного 3D фрагмента, задание значений адаптивных элементов
- •Задание адаптивных элементов у существующего фрагмента
- •РЕДАКТИРОВАНИЕ 3D ЭЛЕМЕНТОВ
- •ПРЕОБРАЗОВАНИЕ
- •Типы преобразований
- •Перемещение/поворот
- •Поворот вокруг оси
- •Перемещение вдоль вектора
- •Масштабирование
- •Симметрия
- •Преобразование 3D фрагмента
- •Преобразование сопряжения
- •Работа с командой
- •Использование манипуляторов
- •Дополнительные опции и параметры
- •МАТЕРИАЛЫ
- •Создание и редактирование материалов
- •Группа «Цвета»
- •Группа «Текстура»
- •Группа «Отображение текстуры»
- •Группа «Преобразование текстуры»
- •Группа «Штриховка в сечении»
- •Материал POV-Ray
- •Дополнительные параметры
- •Нанесение материала на отдельную грань (грани)
- •ИСТОЧНИКИ СВЕТА
- •Создание источника света
- •Точечный источник света
- •Направленный источник света
- •Прожектор
- •Параметры источника света
- •КАМЕРЫ
- •Создание камер
- •Задание камеры
- •Активация камеры
- •Перемещение камеры
- •Параметры камеры
- •ФОТОРЕАЛИСТИЧНОЕ ИЗОБРАЖЕНИЕ
- •Основные положения
- •Работа с командой
- •Прототипы для фотореализма
- •Выбор и настройка качества изображения
- •Примеры фотореалистичных изображений моделей T-FLEX CAD
- •АНАЛИЗ ГЕОМЕТРИИ
- •Характеристики
- •Работа с командой
- •Проверка модели
- •Работа с командой
- •Проверка пересечений тел
- •Работа с командой
- •Измерение кривизны кривых
- •Измерение кривизны поверхностей
- •Работа с командой
- •Типы измеряемых величин
- •Измерение кривизны в точке
- •Отклонение граней
- •Работа с командой
- •Зазор между гранями
- •Работа с командой
- •Расхождение нормалей
- •Работа с командой
- •Гладкость модели
- •Работа с командой
- •Разнимаемость формы
- •Работа с командой
Трёхмерное моделирование
Клавиатура |
Текстовое меню |
Пиктограмма |
||
|
|
|
|
|
<UL> |
Файл|Сборка|Обновить ссылки |
|
|
|
|
|
|
|
|
Загрузить в сборку данные только одной конкретной Детали можно при помощи команды контекстного меню «Обновить».
Сопряжения и степени свободы
При проектировании твердотельных сборочных моделей в T-FLEX CAD часто возникает необходимость задания взаимного расположения деталей, которая не всегда может быть решена только при помощи традиционного для T-FLEX CAD способа привязки с использованием локальных систем координат (ЛСК). Это связано с тем, что изменение расположения деталей должно быть взаимным. Одна деталь может иметь одновременно несколько контактов с другими подвижными деталями. При использовании подхода с использованием ЛСК в таких случаях может возникать рекурсия (зависимость от самого себя) в задании связей. Подобные задачи возникают, например, при создании моделей механических систем (механизмов). Для решения таких задач существуют сопряжения – элементы системы, позволяющие назначить различные связи на геометрические объекты двух операций-компонентов (3D точки, оси, кривые, плоскости и поверхности).
Модель механизма, спроектированную при помощи сопряжений, можно заставить двигаться в специальной команде, перемещая её детали с помощью курсора.
Для привязки 3D фрагментов по ЛСК можно задать дополнительные условия в виде разрешенных степеней свободы. Если впоследствии такой 3D фрагмент привязать в сборке при помощи ЛСК к
562
3D Сборки
другому сопряженному элементу, то он будет включен в расчет сопряженного механизма. Метод позиционирования деталей сборки при помощи сопряжений следует использовать как дополнительный способ привязки, совместно с использованием привязки по локальным системам координат. Использование сопряжений требует дополнительных вычислительных ресурсов компьютера для поисков решений. В связи с этим прибегать к использованию сопряжений рекомендуется, когда другие способы для решения упомянутых задач по тем или иным причинам не подходят.
Что такое сопряжение?
Инструмент «Сопряжений» предназначен для взаимной привязки элементов сборочной модели. Он позволяет располагать их в соответствии с заданными геометрическими условиями. Эти условия задают взаимное расположение объектов трёхмерной модели (граней, рёбер, вершин, характерных точек, осей поверхностей вращения и т.д.) друг относительно друга. Система автоматически решает заданный набор сопряжений и находит расположение объектов, удовлетворяющее заданным условиям. Сопряжения позволяют точно расположить детали проектируемого механизма относительно друг друга. Они позволяют заложить в модель механизма определённые свойства, определить, как его компоненты перемещаются и вращаются относительно других деталей. Для более точного задания ограничений одного элемента сборки относительно другого можно использовать комбинацию различных сопряжений. Отношение между двумя компонентами является ассоциативным. Если переместить одну деталь, то другая деталь переместится вместе с ней. Например, если винт привязан к отверстию, то при перемещении отверстия винт также будет перемещаться.
Сопряжения накладываются на пару геометрических объектов. Они либо связывают между собой два компонента, либо привязывают одно тело к внешней среде (закреплённому объекту). Закреплённым объектом называется такой объект, у которого ограничены все степени свободы, или его положение в пространстве остаётся постоянным. Рекомендуется, чтобы, по крайней мере, один компонент механизма был зафиксирован в пространстве. Это создаёт «опору» для всех других сопряжённых деталей и может предотвратить неожиданное перемещение компонентов механизма.
Каждое сопряжение является объектом модели, занимающим своё место в её структуре. Как полноценный объект системы сопряжение имеет имя, рабочие свойства, отображается в структуре 3D модели. Пользователь может гасить часть сопряжений, чтобы на время исключать их из общего решения. Это позволяет экспериментировать с различными типами сопряжений без переопределения взаимосвязей механизма.
Типы сопряжений
При создании геометрических связей в виде сопряжений можно использовать только такие геометрические понятия, как 3D точка, ось, кривая, плоскость, поверхность. Для выбора геометрических данных пользователь указывает топологические элементы модели или элементы построения. Использование 3D элементов построения возможно при условии, что они построены на основе тела операции. В ином случае второй компонент окажется привязанным к неподвижной среде.
При привязке к элементам построения теряется возможность динамического перемещения данного соединения в сопряженном механизме, поэтому по возможности лучше использовать топологические элементы модели (вершины, ребра, грани и т.д.)
При создании сопряжений важно понимать отличие геометрических данных, используемых в сопряжениях, от топологических объектов, используемых при выборе. Например, плоская грань
563
Трёхмерное моделирование
имеет границы, а плоскость, которая используется в сопряжении – бесконечна. Поэтому созданная геометрическая связь на основе плоской грани будет действовать и за пределами этой грани.
Совпадение
Данный тип сопряжения обеспечивает постоянное полное совпадение одного геометрического объекта с другим. Количество оставшихся степеней свободы зависит от вида геометрии сочетаемых объектов. Например, совмещение двух точек создаст сферический шарнир, у которого заблокировано любое перемещение и разрешен любой поворот. Совмещение точки с кривой позволит элементам не только поворачиваться, но и перемещаться вдоль кривой. В следующей таблице приведены возможные сочетания геометрических элементов при создании совпадения:
Совпадение |
Точка |
|
Кривая |
Поверх- |
ность |
Плоскость |
Проволочное тело |
Листовое тело |
Твёрдое тело |
|
Ось |
||||||||
Точка |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
|
Ось |
+ |
- |
- |
|
- |
+ |
- |
- |
- |
Плоскость |
+ |
+ |
- |
|
- |
+ |
|
|
|
Точка может лежать на любом геометрическом объекте. Если выбраны две плоские грани, то они будут лежать в одной плоскости. Совпадение оси и плоскости обеспечит положение оси в плоскости грани. Условие совпадения точки и твёрдого тела обеспечит постоянное положение точки на его поверхности.
При помощи совпадения в сочетании с другими типами сопряжений можно имитировать различные механические соединения. Например, совпадением пары 3D точек можно создать сферический шарнир.
Параллельность, перпендикулярность
Эти типы сопряжений представляют собой частный случай сопряжения типа «угол». Они обеспечивают взаимную параллельность и перпендикулярность выбранных геометрических объектов. В следующей таблице приведены возможные сочетания геометрических элементов при создании сопряжений параллельности или перпендикулярности:
564
3D Сборки
Параллельность, |
|
|
Кривая |
Поверхность |
Плоскость |
Проволочное тело |
Листовое тело |
Твёрдое тело |
Перпендикуляр- |
Точка |
|
||||||
ность |
Ось |
|||||||
|
||||||||
Ось |
- |
+ |
- |
- |
- |
- |
- |
- |
Плоскость |
- |
+ |
- |
- |
+ |
- |
- |
- |
Касание
Касание обеспечивает постоянный физический контакт между двумя геометрическими объектами. В зависимости от типа геометрии взаимодействующих объектов контакт может осуществляться в одной точке (например, плоскость и сфера) или вдоль прямой (плоскость и цилиндр). Данный тип сопряжения можно установить между двумя плоскостями, плоскостью и поверхностью, двумя поверхностями. Касание любого тела с поверхностью работает только для сферической поверхности.
Касание |
Точка |
|
Кривая |
Поверхность |
Плоскость |
Проволочное тело |
Листовое тело |
Твёрдое тело |
|
Ось |
|||||||
Поверхность |
- |
- |
- |
+ |
+ |
+ |
+ |
+ |
Плоскость |
- |
- |
- |
+ |
+ |
+ |
+ |
+ |
Иногда существует несколько вариантов решения стыковки выбранных объектов. Например, если выбрана плоскость и сфера, решением являются две точки касания. В случае неоднозначности система самостоятельно принимает решение. Как правило, в качестве решения выбирается ближайшая точка к текущему положению механизма. Для перехода в другую область решения при движении механизма используйте режим движения «перетаскивание» (см. ниже).
При неоднозначности решения рекомендуется перед созданием сопряжения переместить сопрягаемые компоненты в область требуемого результата. Части сопряженного механизма можно переместить в команде «Перемещение сопряженных элементов». Компоненты, не участвующие ранее в сопряжениях, можно передвинуть, используя команду «Преобразование».
565
Трёхмерное моделирование
Соосность
«Соосность» - это частный случай сопряжения типа «совпадение». Оно обеспечивает совпадение двух осей. Этот тип сопряжения является одним из наиболее часто используемых. Как правило, этот тип сопряжения задействуется в сочетании с другими типами. Например, для привязки осевой детали к отверстию часто используется совпадение (торцевых плоских граней) в сочетании с соосностью. Для задания соосности можно выбирать элементы модели, способные определить ось (поверхности вращения, эллиптические рёбра, прямые ребра и т.д.).
На иллюстрациях показана привязка частей условного гидроцилиндра при помощи соосности. Остальные части этого простого механизма сопряжены на локальных системах координат. Для наглядности некоторые детали механизма разрезаны по оси.
Расстояние
Сопряжение «расстояние» задаёт связь между двумя объектами, выполняя условие по сохранению заданного расстояния между двумя геометрическими объектами. Можно задать условия типа «не больше», «не меньше» или «равно» заданному значению.
В следующей таблице приведены возможные сочетания геометрических элементов при создании сопряжения «расстояние»:
Расстояние |
Точка |
Ось |
Кривая |
Поверхность |
Плоскость |
Проволочное тело |
Листовое тело |
Твёрдое тело |
|
||||||||
|
|
|
|
|
|
|
|
|
Точка |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
Ось |
+ |
+ |
- |
- |
+ |
- |
- |
- |
Поверхность |
+ |
- |
- |
+ |
- |
- |
- |
- |
Плоскость |
+ |
+ |
- |
+ |
+ |
- |
- |
- |
Этот тип сопряжения, например, можно использовать для задания смещения объектов или для ограничения на взаимное проникновение граней. Для задания ограничения на взаимопроникновение
566
3D Сборки
граней деталей достаточно задать условие расстояния «не меньше» нуля. При этом могут получаться механизмы, работающие за счет физического взаимодействия (соударения) частей.
Продолжая пример с гидроцилиндром, покажем, как можно использовать сопряжение «расстояние». Созданный на предыдущем шаге механизм при некоторых движениях будет работать неправильно из-за того, что части гидроцилиндра могут проникать друг в друга. Эту проблему решает сопряжение «расстояние». Можно задать условие, что расстояние между соответствующими гранями поршня должно быть больше или равно нулю. При кинематическом перетаскивании сопряжений это даст правильную картину поведения механизма.
Угол
Данное сопряжение задаёт угловое расстояние между двумя геометрическими объектами. Угол разворота можно использовать для поворота стыкуемого компонента в нужную позицию. Как и в случае с «расстоянием», в данном типе сопряжения можно использовать условие. При задании такой связи, как правило, существует два или более решений.
В следующей таблице приведены возможные сочетания геометрических элементов при создании сопряжения «угол»:
Угол |
Точка |
|
Кривая |
Поверхность |
Плоскость |
Проволочное тело |
Листовое тело |
Твёрдое тело |
|
Ось |
|||||||
Ось |
- |
+ |
- |
- |
+ |
- |
- |
- |
Плоскость |
- |
+ |
- |
- |
+ |
- |
- |
- |
Привязка 3D фрагмента по ЛСК
3D фрагмент, нанесенный на сборку с использованием локальных систем координат, тоже может участвовать в 3D модели, построенной на сопряжениях. Для определения поведения 3D фрагмента относительно ЛСК привязки в параметрах фрагмента задаются разрешенные степени свободы. Всего существует 6 степеней – по 3 на перемещения и на повороты относительно осей ЛСК. Можно также заранее задать степени свободы в параметрах исходной ЛСК, в файле фрагмента. При вставке 3D фрагмента условия со степенями свободы копируются в экземпляр 3D фрагмента и впоследствии учитываются при расчете комплекса сопряжений спроектированной сборочной 3D модели.
567