
- •Глава 1 модельное представление процесса преобразования сигналов в оптико - электронных системах
- •1.1. Элементы теории систем
- •1.1.1. Сведения о процессе преобразования сигналов
- •1.1.2. Система
- •1.1.3. Связность сигналов и элементов в ОиЛзЭс
- •1.1.4. Модели системы
- •1.2. Математическое моделирование ОиЛзЭс
- •1.2.1. Математическая модель (мм)
- •1.2.2. Проблемы математической теории ОиЛзЭс
- •1.3. Основные математические модели ОиЛзЭс
- •1.3.1. Постановка задачи моделирования
- •1.3.2. Внешняя и внутренняя мм ОиЛзЭс
- •1.3.3. Структурная модель и модель поведения ОиЛзЭс
- •1.3.4. Связный граф системы моделей над ОиЛзЭс
- •1.3.5. Модель поведения мп
- •1.3.6. Цепи связного графа системы моделей для ОиЛзЭс
- •1.4. Оптико- и лазерно- электронная система
- •1.4.1. Структурная схема ОиЛзЭс
- •1.4.2. Классификация ОиЛзЭс
- •1.5. Плоские и сферические волны
- •1.5.1. Скалярные монохроматические волны
- •1.5.2. Интенсивность монохроматической волны
- •1.5.3.Однородные плоские монохроматические волны
- •1.5.4. Однородные сферические монохроматические волны
- •1.6. Модельное представление линейной ОиЛзЭс
- •1.6.1. Внешняя линейная мп ОиЛзЭс
- •1.6.2. Базисные типовые сигналы
- •1.6.3. Координатная интегральная ВншАлгтмМ линейной ос
- •1.6.4. Координатная SvM пространственно-инвариантной оИзС
- •1.6.5. Частотная линейная АнлтМ пространственно-инвариантной оИзС
- •1.6.6. Модели поведения линейной электронной системы
- •1.7. Дискретно-выборочное представление сигналов с финитным спектром
- •1.7.1. Теорема Котельникова (Уиттекера-Шеннона)
- •1.7.2. Свойства выборочной функции
- •1.7.3. Переналожение спектров
- •1.7.4. Теорема Котельникова в частотной области
- •2.1.2. Когерентная оптическая система
- •2.1.3. Частично когерентная оптическая система
- •2.1.4. Некогерентная оптическая система
- •2.2. Преобразование оптических сигналов слоем пространства
- •2.2.1. Принцип Гюйгенса-Френеля
- •2.2.2. Внешние линейные модели поведения слоя пространства
- •2.2.3. Френелевский слой пространства (Фr-сп)
- •2.2.4. Фраунгоферовский слой пространства
- •2.2.5. Геометрооптический слой пространства
- •2.3. Транспарантная модель поведения тонкого однолинзового объектива
- •2.3.1. Коэффициент пропускания и отражения в транспарантном представлении
- •2.3.2. ТрМ оптического модулирующего объекта
- •2.3.3. Комплексный амплитудный коэффициент пропускания тонкого однолинзового анаберрационного сферического объектива в приближении дос
- •2.3.4. Оптико-физический смысл тонкого однолинзового анаберационного объектива
- •2.4. Оптическая фурье-преобразующая система
- •2.4.1. Координатная ВнтрСм офпс с транспарантным входом
- •2.4.3. Координатная ВнтрСм офпс с линзовым входом
- •2.5. Когерентная оптическая изображающая система
- •2.5.1. ГрфМ иерархической структуры оос.
- •2.5.2. Пространственно-координатные мп когерентной оИзС в приближении дос.
- •2.5.3. SvM когерентной ОизС в приближении рос, КрпДос, адос и иос
- •2.5.4. Частотная лАнлтчМ когерентной пиоИзС
- •2.5.5. Модели поведения частично когерентной пиоИзС
- •2.6. Некогерентная оптическая изображающая система
- •2.6.1. SvM некогерентной оИзС
- •2.6.2. Частотная лАнлтчМ некогерентной пиоИзС
- •2.6.3.Свойства опф
- •2.6.4. Передача пространственных частот в некогерентной пиоИзС
- •2.6.5. Величина потока излучения в некогерентном изображении точечного источника
- •2.6.6. Модельные представления опф
- •2.6.6.1. Автоковариационная модель (аKvM) опф
- •2.6.6.2. Геометроаналитическая модель (ГмаМ) опф КрпДос
- •2.6.7. Аппроксимирующая см нкфр
- •2.7. Влияние монохроматических аберраций на передаточные функции оптической изображающей системы
- •2.7.1. Волновая аберрация
- •2.7.2. Связь между волновыми и геометрооптическими аберрациями
- •2.7.3. Влияние монохроматических аберраций на кпф
- •2.7.4. Влияние монохроматических аберраций на опф
- •2.7.5. Влияние функции зрачка на опф
- •2.7.6. Влияние волновой аберрации на опф
- •2.8. Голографическая изображающая система
- •2.8.1. ВнтрСм голографического процесса
- •2.8.1. ВнтрСм типа голограммы.
- •2.8.2. Пространственно-частотная ТрМ двумерной коголограммы.
- •2.8.4. Восстановление волнового фронта с помощью двумерной пропускающей амплитудной коголограммы
- •3.2. Пространственная передаточная функция маи
- •3.2.2. ЛАнлтМп маи и определение ппф
- •3.2.3. Определение ппф маи с плоской симметрией в декартовой системе координат
- •3.2.4. Ппф осесимметричного маи
- •3.2.5. Ппф осесимметричного маи с учетом угловой периодичности растра
- •3.3. Частотно-временной спектр потока излучения на выходе маи
- •3.3.1 Временной поток излучения на выходе маи (Шатоха)
- •3.3.2. Поступательное движение маи
- •3.3.2.1. Поступательное движение вдоль прямолинейной траектории
- •3.3.2.2. Линейное сканирование маи вдоль оси оX
- •3.3.3. Круговое сканирование маи
- •3.3.4. Вращательное сканирование маи вокруг собственной оси
- •3.3.4.1. Получастотный метод
- •3.3.4.2. Частотный метод
- •3.4. Преобразование оптического сигнала приемником излучения (Шатоха)
- •3.4.1. Энергетические характеристики чувствительности пи
- •3.4.2. Частотно-временные характеристики пи
- •3.4.3 Неоднородность чувствительности пи
- •3.4.4. Полная передаточная функция пи
- •3.4.5. Чвс на выходе пи. Квазимонохроматический поток
- •3.4.6. Чвс на выходе пи. Полихроматический поток
- •3.4.7. Полихроматическая пф КмпзцСист:
- •3.5. Преобразование сигнала электронным трактом
- •3.5.1. Дифференцирование и интегрирование сигналов
- •3.5.2. Нелинейное преобразование сигналов
- •3.5.3. Амплитудное детектирование
- •3.5.4. Частотное и фазовое детектирование
- •3.5.5. Примеры структурных схем электронного тракта оэс
- •3.5.6. Развертка и восстановление изображения
- •Глава 4 преобразование случайных сигналов в оптико и лазерно-электронных системах
- •4.1. Преобразование случайных сигналов
- •Линейными и нелинейными элементами
- •4.1.1. Постановка задачи
- •4.1.1.1. Корреляционный метод расчёта
- •4.1.1.2. Частотный метод расчёта
- •4.1.2. Преобразование случайного сигнала нелинейной системой
- •4.1.3. Преобразование плотности вероятности
- •4.1.4. Корреляционная функция и спектральная плотность на выходе нбэ
- •4.2. Преобразование случайного поля яркости оптической изображающей системой
- •4.2.1. Яркостные характеристики естественных фонов
- •4.2.1.1. Фоновые образования с протяжёнными резкими перепадами яркости
- •4.2.1.2. Спектральная плотность корреляционной функции случайного яркостного фонового поля
- •4.2.3. Преобразование фонового излучения оптической системой
- •4.2.3.2. Частотный метод расчёта
- •4.2.3.3. Частотный и Kr-методы расчёта для удалённого объекта
- •4.3. Преобразование случайного оптического сигнала маи
- •4.3.1. Преобразование фонового потока излучения неподвижным маи
- •4.3.1.2. Частотный метод расчёта
- •4.3.2. Преобразование фонового потока излучения подвижным маи
- •4.3.3. Поступательное движение маи
- •4.3.4. Вращательное сканирование маи вокруг собственной оси
- •4.4. Преобразование случайного оптического сигнала приёмником излучения и электронным трактом
- •4.4.1. Преобразование случайного сигнала пи
- •4.4.2. Преобразование случайного сигнала эт
- •4.5. Отношение сигнал/помеха на выходе линейной инвариантной во времени ОиЛзЭс
- •4.5.1. Постановка задачи
- •4.5.2. Определение осп на выходе линейной инвариантной оэс
- •4.5.3. Осп при линейном сканировании
- •Глава 5. Обнаружение оптических сигналов и измерение их параметров
- •5.1. Три варианта общей постановки задачи
- •(Назначение, цель, исходные данные)
- •5.1.1. Задача обнаружения оптического объекта
- •5.1.2. Задача измерения
- •5.1.3. Задача воспроизведения
- •5.1.4. Вывод
- •5.2. Вероятностные характеристики обнаружения
- •5.2.1. Априорные и апостериорные вероятности обнаружения
- •5.3. Критерии, лежащие в основе принятия решения системой (критерии обнаружения основаны на выборе )
- •5.3.1. Критерий максимума апостериорной условной вероятности,
- •5.3.2. Критерий минимального среднего риска (Критерий Кр 2° Байеса)
- •5.3.3. Критерий максимума правдоподобия (Кр 3°)
- •5.3.4. Критерий Неймана-Пирсона
- •5.4. Обнаружение методом однократного отсчёта
- •5.4.1. Постановка задачи
- •5.4.2. Описание метода однократного отсчёта
- •5.4.3. Недостатки метода однократного отсчёта
- •5.4.3.1. Метод непрерывного сравнения мгновенного значения
- •5.4.3.2. Определение значения в момент отсчёта
- •5.4.4. Вероятностные характеристики обнаружения в методе непрерывного сравнения мгновенных значений реализации с
- •5.4.4.1 Условная вероятность ложной тревоги
- •5.4.4.2 Условная вероятность пропуска объекта
- •5.4.5. Отношение сигнал/помеха. Рабочие характеристики ОиЛзЭс
- •5.4.5.1. Рабочие характеристики ОиЛзЭс обнаружения на основе Кр4º (Неймана-Пирсона)
- •5.4.5.2. Рабочие характеристики ОиЛзЭс обнаружения на основе Кр1º (Котельникова или максимума апостериорной вероятности) и Кр2º (Байеса или минимума среднего риска)
- •5.4.6. Расчет вероятности возникновения ложной тревоги
- •5.4.7. Рабочие характеристики обнаружения
- •5.5. Корреляционный метод обнаружения
- •5.5.0. Постановка задачи
- •5.5.1. Выборка конечного объёма
- •5.5.1.1. Первый алгоритм обнаружения
- •5.5.1.2. Второй алгоритм обнаружения
- •5.5.2. Выборка бесконечного объёма
- •5.5.3. Вероятностные характеристики обнаружения на основе корреляционного метода
- •5.5.4. Преимущества и недостатки Kr-метода
- •5.5.4.1. Преимущества Kr-метода
- •5.5.4.2. Недостатки Kr-метода
- •5.5.4. Практическая реализация корреляционного метода обнаружения
- •5.6. Обнаружение с использованием оптимальной фильтрации
- •5.6.1. Электронная система обнаружения на основе чвф
- •5.6.2. Оценка мгновенного значения осп на выходе чвф
- •5.6.3. Структурная схема оптимального чвф
- •5.6.3.1. Свойства оптимального чвф
- •5.6.3.2. Синтез структурной схемы оптимального чвф
- •5.6.4. Анализ оптимального отношения сигнал/помеха
- •5.6.5. Оптимальная фильтрация в оИзС
- •5.6.6. Трехмерный оптимальный пространственно-временной
- •5.6.7. Оптическая согласованная фильтрация в системе
- •5.7. Статистическая оценка измеряемых параметров сигнала
- •5.7.1. Задача измерения параметров сигнала при наличии помех
- •5.7.2. Нахождение
- •5.8. Функция потерь и эффективность правил оценки
- •5.8.1. Функция потерь как характеристика погрешностей измеренного параметра
- •5.8.2. Байесовская оценка измеряемого параметра
- •5.8.3. Эффективность байесовской оценки
- •5.8.3.2. Функция потерь, линейная по модулю
- •5.8.3.3. Квадратичная функция потерь
- •5.8.3.4. Прямоугольная функция потерь
- •5.8.4. Выводы
- •5.9. Оценка измеряемых сигнальных параметров при аддитивных помехах с нормальным распределением
- •5.9.1. Измерение произвольного параметра
- •5.9.2. ОиЛзЭс измерения амплитуды (пикового значения) сигнала
- •5.9.3. Статистические характеристики оптимальной оценки
- •5.9.3.1. Математическое ожидание случайной оптимальной оценки
- •5.9.3.2. Дисперсия случайной оптимальной оценки измеряемой амплитуды а
- •5.9.4. Аналогия между задачами обнаружения объекта
- •Глава 6. Методика и примеры светоэнергетического расчета оэс
- •6.1. Методика расчета оэс в режиме обнаружения
- •6.1.1. Требуемое , реализуемое осп
- •6.1.2. Энергетический расчет сканирующей оэс со строчно-кадровой разверткой
- •6.2. Расчет сканирующей оэс в режиме обнаружения
- •6.3. Расчет оэс измерения дефокусировки объективов
- •Последовательность расчета в случае амплитудного метода измерения продольной дефокусировки
- •Последовательность расчета в случае фазового метода измерения продольной дефокусировки
- •Последовательность расчета в случае амплитудного метода измерения продольной дефокусировки
- •Последовательность расчета в случае фазового метода измерения продольной дефокусировки
1.1.2. Система
Научной базой системного подхода (в широком смысле) является математическая теория систем, представляющая собой развивающуюся область прикладной математики, которая лежит на стыке теории информации, теории управления и теории автоматов [12,26,27,46-50]. Круг вопросов, который она изучает, связан с исследованием сложных реальных технических макрообъектов (систем), состоящих из большого числа разнообразных элементов, которые обмениваются между собой входными и выходными сигналами. Однако науку о системах ещё нельзя считать сложившейся: существует много направлений системных исследований, нет единства терминологии. Как правило, в упомянутых выше и других публикуемых работах рассматривается один из подходов или методов системных исследований, одна из точек зрения. Отсутствуют работы, в которых были бы объединены подходы и концепции разных авторов, изучено обобщённое представление о развиваемых методах и применяемых моделях системных исследований, даны рекомендации по выбору подхода и метода в конкретных условиях. Поэтому целью всей главы является как краткий обзор определяющих понятий математической теории систем, так и разработка её новых ведущих, и прежде всего структуралистских, положений в таком плане, в каком они могут быть использованы для описания структуры и поведения исследуемой ОиЛзЭС [13-23,26-44,50-56].
Концепция систем как методологический принцип указания общих возможностей ОиЛзЭП и кóмплексов опирается на исходное понятие системы. Хотя в настоящее время ни одно из определений системы не является общепринятым, часто под системой понимается целостная (единая) совокупность взаимоупорядоченных, взаимосвязанных и взаимодействующих элементов, обладающих пространственной структурной или поведенческой (функциональной) замкнутостью и выполняющих определенную задачу для достижения поставленной цели. Дополнительно под системой в узком смысле понимают сложную совокупность функционально завершённых элементов (компонент), каждый из которых может функционировать автономно, но эффект, достигаемый от такой совокупности, не является суммарным по отношению к каждому из её элементов [1-12,23,26-34].
Однако подобное представление об ОиЛзЭП и кóмплексах как системах едва ли можно считать удовлетворительным уже потому, что каждый преобразующий элемент (ПЭ) можно рассматривать как новую систему (подсистему). Кроме того, открытым остается вопрос о том, что понимать под упорядоченностью, связями, взаимодействием и функциональной завершенностью ПЭ, и тем более что такое суммарный эффект. Тем не менее данное определение, не свободное от недостатков, все же уточняет интуитивное восприятие ОиЛзЭП в виде системы как совокупности сложного связного набора технических объектов.
Субъективное содержание понятия система состоит в том, что исследователь, приступая к изучению конкретного технического объекта или их совокупности, выделяет из внешней среды определенные элементы или явления. Они, с одной стороны, отвечают цели исследования, а с другой, – легче и естественнее поддаются анализу или используются при проектировании.
Объективное содержание понятия система связано с тем, что система обладает либо структурной пространственной, либо поведенческой (функциональной) замкнутостью. Это означает, что можно провести границу либо на множестве компонент этой системы, либо на множестве идентифицируемых ей операторов поведения, по одну сторону от которой окажется система, а по другую – внешняя среда. Причем эти две возможности не являются взаимоисключающими.
Определение системы в процессе непрерывного развития математической теории систем изменялось не только по форме, но и по содержанию. Создание коллективов людей, работающих над решением соответствующих проблем, привело к появлению понятия системы как некоторой высшей формы организации, функционирование которой направлено на достижение глобальной цели. В работе [9] различают девять обобщающих определений системы, отличающихся друг от друга степенью абстракции и количеством учитываемых факторов, число которых в определении совпадают с его номером. Последовательность определений, по-видимому, можно было бы продолжить до n-го номера, в котором учитывалось бы такое количество факторов (элементов, связей, отображений) в реальной системе, которое необходимо для решаемой задачи, для достижения поставленной цели.
Наличие большого многообразия технических объектов, подпадающих под определение системы, привело к тому, что в настоящее время не существует единого определения, удовлетворяющего всем предъявляемым к нему требованиям. В то же время, несмотря на упомянутые трудности, понятие система имеет чрезвычайно широкую область практического применения, поскольку фактически неизвестно, что такое "несистема". Ведь в каждом заложено интуитивное представление о системе, базирующееся на индивидуальном опыте. Поэтому в современной математической теории систем обходят чреватые затруднениями попытки дать явное определение системы и считают, что изучаемая система задана, если имеется какая-либо её модель, не обязательно математическая. Этот постулат является отправным положением разрабатываемого в работе системно-модельного подхода к описанию ППС в ОиЛзЭП. Иначе говоря, "внемодельных" представлений системы нет, и система с необходимостью анализируется и синтезируется на основе какой-то модельной идентификации. В рамках такого подхода проектируемый прибор представляет собой ПредмФзчМ, которая находится в кардинальном приборном подклассе моделей ОиЛзЭС. Этот подкласс идентифицируется с помощью базовой приборной трибы из шести композиционных родов на основе де-факторного и подобно-факторного основных семейств, входящих в конструкторско-статическую, полунатурную или натурную главные когорты (рис. 1.3, см. 1.3.1), а разрабатываемый ОиЛзЭлн прибор суть конкретный рабочий модельный вид или реализуемая модельная вариация.
Наконец, системно-модельный подход позволяет строго определить понятие "технического кóмплекса". На практике кóмплекс трактуется как совокупность технических объектов, процессов или свойств, образующих одно целое. В то же время в рамках СТ ОиЛзЭС строят кóмплексный компьютерный предметно-физический класс S32/13 (рис. 1.1). При этом конкретный кóмплекс идентифицируется с помощью кóмплексной КмптрПредмФзчМ, представляющей собой композицию компьютерно-предметных (аналоговых, цифровых, гибридных) и предметно-физических (стендовых, приборных, машинных) моделей.