Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вся книга.doc
Скачиваний:
73
Добавлен:
05.11.2018
Размер:
43.08 Mб
Скачать

7. Закон сохранения мощности

В общем виде закон сохранения мощности записывается как инвариантность величины мощности:

= const. (9.20)

Из уравнения полной мощности N = P + G следует, что полезная мощность и мощность потерь проективно инверсны и поэтому любое изменение свободной энергии компенсируются изменением мощности потерь под контролем полной мощности .

Полученный вывод дает основание представить ЗАКОН СОХРАНЕНИЯ МОЩНОСТИ в виде скалярного уравнения:

, где . (9.21)

Содержательный смысл уравнения прозрачен: изменение свободной энергии компенсируется разностью между потерями и поступлениями энергии в систему. [29].

Механизм открытой системы снимает ограничения замкнутости, и тем самым предоставляет возможность дальнейшего движения системы.

Однако этот механизм не показывает возможных направлений движения — эволюции систем. Поэтому он должен быть дополнен механизмами эволюционирующих и неэволюционирующих систем или неравновесных и равновесных.

8. Равновесные и неравновесные системы

Система находится в равновесии, если все внешние потоки уравновешены внутренними. Равновесная система не может совершать внешней работы и не эволюционирует во времени.

Неравновесные системы обладают свойством эволюционировать во времени, то есть с течением времени могут совершать внешнюю работу. В этом случае внешние потоки не уравновешены внутренними.

Равновесная система является устойчивой в том смысле, что ее сущность определяется условиями:

E = const; N = 0; B = min; A = max; система замкнутая.

Сущность неравновесных систем определяется условиями:

E const; N 0; B min; A max; система открытая.

Удаленность от равновесия измеряется величиной В 0 .

Поскольку эволюционируют во времени только неравновесные системы рассмотрим возможные типы их изменения и соответствующие им механизмы.

В соответствии с определением неравновесных систем логически возможны следующие типы изменений свободной и связной энергии:

Тип 1. Имеет место уменьшение свободной энергии и рост связной:

, при , (N < G);

то есть поступления в систему меньше потерь.

Тип 2. Имеет место увеличение свободной энергии и уменьшение связной:

, при , (N > G);

то есть поступления больше потерь.

Тип 3. Имеет место отсутствие изменений свободной и связной энергии:

, при , (N = G).

Первому типу соответствуют системы с доминированием процессов рассеяния свободной энергии и приближения к равновесию. Будем их называть диссипативными.

Второму — системы с доминированием процессов накопления свободной энергии и удаления от равновесия. Их будем называть антидиссипативными.

Третий тип может быть охарактеризован как ситуация неустойчивого равновесия внешних и внутренних потоков. Этот тип назовем переходным. [29].

Специально отметим, что никаких других типов изменений из определения неравновесных систем не следует. Все другие процессы являются той или иной комбинацией названных. Другими словами диссипативные и антидиссипативные процессы и переходы между ними ОБРАЗУЮТ ВСЮ СОВОКУПНОСТЬ СУЩНОСТНЫХ ПРОЦЕССОВ открытых неравновесных систем.