
- •Алгебра Підручник для 7 класу
- •Юні друзі!
- •§ 1. Рівняння
- •1. Поняття рівняння
- •Приклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •2. Розв’язування рівнянь. Властивості рівнянь
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •3. Лінійні рівняння з однією змінною
- •Підсумок
- •Д ля тих, хто хоче знати більше Рівняння з модулями
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •4. Розв’язування задач за допомогою рівнянь
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 1
- •Завдання для самоперевірки № 1
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 2. Цілі вирази
- •5. Вирази зі змінними. Цілі вирази
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •6. Тотожно рівні вирази. Тотожності
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 2
- •Завдання для самоперевірки № 2
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 3. Одночлени
- •7. Степінь з натуральним показником
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •8. Властивості степеня з натуральним показником
- •1. Множення степенів з однаковими основами.
- •2. Ділення степенів з однаковими основами.
- •3. Піднесення степеня до степеня.
- •4. Піднесення добутку до степеня.
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •9. Одночлен та його стандартний вигляд
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 3
- •Завдання для самоперевірки № 3
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 4. Многочлени
- •10. Многочлен та його стандартний вигляд
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •11. Додавання і віднімання многочленів
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •12. Множення одночлена на многочлен
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •13. Множення многочлена на многочлен
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •14. Розкладання многочленів на множники способом винесення спільного множника за дужки
- •П риклади розв’язання вправ
- •Р івень а
- •Рівень б
- •Р івень в
- •Вправи для повторення
- •15. Розкладання многочленів на множники способом групування
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 4
- •Завдання для самоперевірки № 4
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 5. Формули скороченого множенея
- •16. Множення різниці двох виразів на їх суму
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •17. Квадрат суми і квадрат різниці двох виразів
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •18. Розкладання на множники різниці квадратів двох виразів
- •П риклади розв’язання вправ
- •Р івень а
- •Рівень б
- •Р івень в
- •Вправи для повторення
- •19. Розкладання многочленів на множники з використанням формул квадрата суми і квадрата різниці
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •20. Різниця і сума кубів двох виразів
- •П риклади розв’язання вправ
- •Рівень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •21. Застосування кількох способів для розкладання многочленів на множники
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Д ля тих, хто хоче знати більше
- •22. Застосування перетворень виразів
- •1. Порівняння значень многочлена з нулем.
- •2. Знаходження найбільшого і найменшого значень виразів.
- •3. Розв’язування задач на подільність.
- •4. Знаходження значень многочлена за допомогою мікрокалькулятора.
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 5
- •Завдання для самоперевірки № 5
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 6. Функції
- •23. Функція. Способи задання функції
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •24. Графік функції. Функція як математична модель реальних процесів
- •П риклади розв’язання вправ
- •Р івень а
- •Рівень б
- •Р івень в
- •Вправи для повторення
- •25. Лінійна функція
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 6
- •Завдання для самоперевірки № 6
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 7. Системи лінійних рівнянь із двома змінними
- •26. Рівняння із двома змінними
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •27. Графік лінійного рівняння із двома змінними
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •28. Системи двох лінійних рівнянь із двома змінними
- •1. Системи лінійних рівнянь із двома змінними та їх розв’язки.
- •2. Розв’язування систем лінійних рівнянь графічним способом.
- •П риклади розв’язання вправ
- •29. Розв’язування систем лінійних рівнянь способом підстановки
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •30. Розв’язування систем лінійних рівнянь способом додавання
- •Д ля тих, хто хоче знати більше
- •Вправи для повторення
- •31. Розв’язування задач за допомогою систем рівнянь
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 7
- •Завдання для самоперевірки № 7
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •Задачі за курс алгебри 7 класу
- •Задачі підвищеної складності До § 1. Лінійні рівняння з однією змінною
- •До § 2. Цілі вирази
- •До § 3. Одночлени
- •До § 4. Многочлени
- •До § 5. Формули скороченого множення
- •До § 6. Функції
- •До § 7. Системи лінійних рівнянь із двома змінними
- •Логічні задачі
- •Вітчизняні математики
- •Відомості з курсу математики 5–6 класів Подільність натуральних чисел
- •Найбільший спільний дільник
- •Найменше спільне кратне
- •Десяткові дроби
- •Звичайні дроби
- •Додатні та від’ємні числа
- •Відповіді
- •Завдання для самоперевірки № 1
- •Завдання для самоперевірки № 2
- •Завдання для самоперевірки № 3
- •Завдання для самоперевірки № 4
- •Завдання для самоперевірки № 5
- •Завдання для самоперевірки № 6
- •Завдання для самоперевірки № 7
- •Задачі за курс алгебри 7 класу
- •Задачі підвищеної складності
- •Предметний покажчик
- •Розділ і. Лінійні рівняння з однією змінною
- •Розділ іі. Цілі вирази
- •Розділ ііі. Функції
- •§ 6. Функції
- •Розділ іv. Системи лінійних рівнянь із двома змінними
- •§ 7. Системи лінійних рівнянь із двома змінними
- •Навчальне видання
- •Алгебра
- •46010, М. Тернопіль, вул. Поліська, 6а. Тел. 8-(0352)-43-10-31, 43-15-15, 43-10-21.
Д ля тих, хто хоче знати більше
22. Застосування перетворень виразів
Нам уже траплялося чимало завдань, для розв’язання яких треба було перетворювати той чи інший вираз. Здебільшого ми використовували перетворення виразів, коли розв’язували рівняння, доводили тотожності, знаходили значення виразів. Розглянемо ще деякі задачі, пов’язані з перетвореннями виразів.
1. Порівняння значень многочлена з нулем.
Приклад 1. Довести, що многочлен х2 - 8х + 18 набуває лише додатних значень.
● Виділивши із тричлена х2 - 8х + 18 квадрат двочлена, матимемо:
х2 - 8х + 18 = х2 - 8х + 16 – 16 + 18 = (х - 4)2 + 2.
Ми подали многочлен у вигляді суми двох доданків (х - 4)2 і 2. Доданок (х - 4)2 для будь-яких х набуває лише невід’ємних значень, доданок 2 — додатний. Тому вираз (х - 4)2 + 2 набуває лише додатних значень. Оскільки х2 - 8х + 18 = (х - 4)2 + 2, то й вираз х2 - 8х + 18 набуває лише додатних значень. ●
2. Знаходження найбільшого і найменшого значень виразів.
Виходячи з рівності х2 - 8х + 18 = (х - 4)2 + 2, одержаній у прикладі 1, можна вказати найменше значення многочлена х2 - 8х + 18. Воно дорівнює 2, до того ж, цього найменшого значення многочлен набуває, якщо х = 4.
Приклад 2. Знайти найбільше значення многочлена -х2 + 4х + 1.
● Спочатку даний вираз запишемо так:
-х2 + 4х + 1 = -(х2 - 4х - 1).
Тоді:
Найбільше значення многочлена дорівнює 5. ●
3. Розв’язування задач на подільність.
Приклад 3. Довести, що для будь-якого цілого значення n значення виразу (2n + 3)2 - – (2n - 3)(2n + 5) ділиться на 8.
● Спростимо даний вираз:
(2n + 3)2 - (2n - 3)(2n + 5) = 4n2 + 12n + 9 - (4n2 + 10n - 6n - 15) =
= 4n2 + 12n + 9 - 4n2 - 4n + 15 = 8n + 24 = 8(n + 3).
Для будь-якого цілого значення n добуток 8(n + 3) ділиться на 8, а тому й значення виразу (2n + 3)2 - (2n - 3)(2n + 5) ділиться на 8. ●
4. Знаходження значень многочлена за допомогою мікрокалькулятора.
Приклад 4. За допомогою мікрокалькулятора знайти значення многочлена 12х3 - 24х2 + 15х - 8, якщо х = 2,8.
● Значення даного многочлена шукати зручніше, якщо його попередньо перетворити так:
12х3 - 24х2 + 15х - 8 = (12х2 - 24х + 15)х - 8 = ((12х - 24)х + 15)х - 8.
Якщо х = 2,8, то схема обчислень є такою:
12 |
|
2,8 |
- |
24 |
|
2,8 |
+ |
15 |
|
2,8 |
- |
8 |
= |
Виконавши обчислення, знайдемо значення многочлена. Воно дорівнює 109,264. ●
Усно
715. Знайдіть найменше значення виразу:
а) x2 + 7; б) (а 6)2; в) (b 1)2 + 3.
716. Знайдіть найбільше значення виразу:
a) 7 - х2; б) 1 (х 2)2; в) 5 (x + 5)2.
За якого значення х вираз набуває найбільшого значення?
Р івень а
Доведіть, що вираз набуває лише невід’ємних значень:
717. а) x2 + 2x + 1; б) 4m2 + 4mn + n2 + 3.
718. а) a2 4а + 4; б) x2 2xy + y2 + 4.
Доведіть, що значення виразу ділиться на дане число:
719. а) 2452 2362 на 9; б) 4382 622 на 500;
в) 523 363 на 16; г) 753 + 253 на 100.
720. а) 8112 7122 на 99; б) 483 193 на 29.
За допомогою мікрокалькулятора знайдіть значення многочлена:
721. а) 4х3 - 6х2 + 5х - 3, якщо х = 5; х = 3,2; х = 2,6;
б) 1,2х3 + 2,4х2 + 0,5х - 1, якщо х = 1,7;
в) 4,5х4 + 4х3 3,5х2 + 2х - 1,8, якщо х = 4.
722. а) 15х3 - 8х2 + 12х - 30, якщо х = 2; х = 1,2; х = 4;
б) 2,4х4 - 7,2х3 3,3х2 + 4,5х, якщо х = 3.