
- •Алгебра Підручник для 7 класу
- •Юні друзі!
- •§ 1. Рівняння
- •1. Поняття рівняння
- •Приклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •2. Розв’язування рівнянь. Властивості рівнянь
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •3. Лінійні рівняння з однією змінною
- •Підсумок
- •Д ля тих, хто хоче знати більше Рівняння з модулями
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •4. Розв’язування задач за допомогою рівнянь
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 1
- •Завдання для самоперевірки № 1
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 2. Цілі вирази
- •5. Вирази зі змінними. Цілі вирази
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •6. Тотожно рівні вирази. Тотожності
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 2
- •Завдання для самоперевірки № 2
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 3. Одночлени
- •7. Степінь з натуральним показником
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •8. Властивості степеня з натуральним показником
- •1. Множення степенів з однаковими основами.
- •2. Ділення степенів з однаковими основами.
- •3. Піднесення степеня до степеня.
- •4. Піднесення добутку до степеня.
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •9. Одночлен та його стандартний вигляд
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 3
- •Завдання для самоперевірки № 3
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 4. Многочлени
- •10. Многочлен та його стандартний вигляд
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •11. Додавання і віднімання многочленів
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •12. Множення одночлена на многочлен
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •13. Множення многочлена на многочлен
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •14. Розкладання многочленів на множники способом винесення спільного множника за дужки
- •П риклади розв’язання вправ
- •Р івень а
- •Рівень б
- •Р івень в
- •Вправи для повторення
- •15. Розкладання многочленів на множники способом групування
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 4
- •Завдання для самоперевірки № 4
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 5. Формули скороченого множенея
- •16. Множення різниці двох виразів на їх суму
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •17. Квадрат суми і квадрат різниці двох виразів
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •18. Розкладання на множники різниці квадратів двох виразів
- •П риклади розв’язання вправ
- •Р івень а
- •Рівень б
- •Р івень в
- •Вправи для повторення
- •19. Розкладання многочленів на множники з використанням формул квадрата суми і квадрата різниці
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •20. Різниця і сума кубів двох виразів
- •П риклади розв’язання вправ
- •Рівень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •21. Застосування кількох способів для розкладання многочленів на множники
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Д ля тих, хто хоче знати більше
- •22. Застосування перетворень виразів
- •1. Порівняння значень многочлена з нулем.
- •2. Знаходження найбільшого і найменшого значень виразів.
- •3. Розв’язування задач на подільність.
- •4. Знаходження значень многочлена за допомогою мікрокалькулятора.
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 5
- •Завдання для самоперевірки № 5
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 6. Функції
- •23. Функція. Способи задання функції
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •24. Графік функції. Функція як математична модель реальних процесів
- •П риклади розв’язання вправ
- •Р івень а
- •Рівень б
- •Р івень в
- •Вправи для повторення
- •25. Лінійна функція
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 6
- •Завдання для самоперевірки № 6
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •§ 7. Системи лінійних рівнянь із двома змінними
- •26. Рівняння із двома змінними
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •27. Графік лінійного рівняння із двома змінними
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •28. Системи двох лінійних рівнянь із двома змінними
- •1. Системи лінійних рівнянь із двома змінними та їх розв’язки.
- •2. Розв’язування систем лінійних рівнянь графічним способом.
- •П риклади розв’язання вправ
- •29. Розв’язування систем лінійних рівнянь способом підстановки
- •Д ля тих, хто хоче знати більше
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •30. Розв’язування систем лінійних рівнянь способом додавання
- •Д ля тих, хто хоче знати більше
- •Вправи для повторення
- •31. Розв’язування задач за допомогою систем рівнянь
- •П риклади розв’язання вправ
- •Р івень а
- •Р івень б
- •Р івень в
- •Вправи для повторення
- •Запитання і вправи для повторення § 7
- •Завдання для самоперевірки № 7
- •1 Рівень
- •2 Рівень
- •3 Рівень
- •4 Рівень
- •Задачі за курс алгебри 7 класу
- •Задачі підвищеної складності До § 1. Лінійні рівняння з однією змінною
- •До § 2. Цілі вирази
- •До § 3. Одночлени
- •До § 4. Многочлени
- •До § 5. Формули скороченого множення
- •До § 6. Функції
- •До § 7. Системи лінійних рівнянь із двома змінними
- •Логічні задачі
- •Вітчизняні математики
- •Відомості з курсу математики 5–6 класів Подільність натуральних чисел
- •Найбільший спільний дільник
- •Найменше спільне кратне
- •Десяткові дроби
- •Звичайні дроби
- •Додатні та від’ємні числа
- •Відповіді
- •Завдання для самоперевірки № 1
- •Завдання для самоперевірки № 2
- •Завдання для самоперевірки № 3
- •Завдання для самоперевірки № 4
- •Завдання для самоперевірки № 5
- •Завдання для самоперевірки № 6
- •Завдання для самоперевірки № 7
- •Задачі за курс алгебри 7 класу
- •Задачі підвищеної складності
- •Предметний покажчик
- •Розділ і. Лінійні рівняння з однією змінною
- •Розділ іі. Цілі вирази
- •Розділ ііі. Функції
- •§ 6. Функції
- •Розділ іv. Системи лінійних рівнянь із двома змінними
- •§ 7. Системи лінійних рівнянь із двома змінними
- •Навчальне видання
- •Алгебра
- •46010, М. Тернопіль, вул. Поліська, 6а. Тел. 8-(0352)-43-10-31, 43-15-15, 43-10-21.
Р івень в
592. Піднесіть до куба:
а) (а + 1)3; б) (2х у)3; в) (3m + 4n)3.
593. Спростіть вираз: (a10 b10)2(a10 + b10)2 (a20 + b20)2.
594. Доведіть, що для кожного натурального значення n значення виразу (5n + 2)2 2(5n + 2)(5n 2) + (5n 2)2 ділиться на 16.
595. Доведіть, що вираз (x2 + ху + y2)2 (x + у)4 + 2ху(x + у)2 набуває лише невід’ємних значень.
596. Ціле число при діленні на 7 дає в остачі 3. Яку остачу при діленні на 7 дає квадрат цього числа?
597. Ціле число m не ділиться на 5. Доведіть, що число m4 - 1 ділиться на 5.
598. Число а є квадратом деякого натурального числа. Чи може запис числа а закінчуватися двома шістками?
Вправи для повторення
599. Одне число становить 0,8 іншого числа і менше від нього на 12. Знайдіть ці числа.
600. Одне із чисел на 80% більше від іншого. Якщо від більшого числа відняти 3,4, а до меншого додати 2,2, то одержимо однакові результати. Знайдіть ці числа.
601. Робітник і його учень виготовили 81 деталь, до того ж, робітник виготовив на 70% деталей більше, ніж учень. Скільки деталей виготовив робітник і скільки учень?
602. Подайте
у вигляді квадратів числа:
81; 441; 625; 3,24; 0,09; 0,36;
603. Подайте вираз у вигляді квадрата одночлена стандартного вигляду:
а) 16х2; б) 196с4; в) 0,25b2с2; г)
x4y6z2.
604. Розкладіть на множники:
а) (2x – 3y)(2x + 3y) + 9y2 + 4х; б) а6 + 2a4 + 2a2 + 4.
18. Розкладання на множники різниці квадратів двох виразів
У тотожності (a - b)(a + b) = a2 - b2 поміняємо місцями ліву і праву частини:
a2 b2 = (a b)(a + b).
Одержану тотожність називають формулою різниці квадратів двох виразів. Формулюють її так:
-
Різниця квадратів двох виразів дорівнює добутку різниці цих виразів та їх суми.
Формула різниці квадратів дає можливість розкласти на множники двочлен a2 b2. Її використовують для розкладання на множники різниці квадратів двох довільних виразів. Наприклад:
4х2 9 = (2х)2 32 = (2x 3)(2x + 3).
Порівняйте
(а – b)(a + b) = а2 – b2 |
— |
помножили різницю двох виразів на їх суму; результат — многочлен (різниця квадратів двох виразів) |
а2 – b2 = (а – b)(a + b) |
— |
розклали на множники різницю квадратів двох виразів; результат — добуток різниці виразів та їх суми |
П риклади розв’язання вправ
Приклад 1. Розкласти на множники:
а) 16х4 2,25у2z2; б) (4a - b)2 - a2.
● а) 16х4 2,25у2z2 = (4х2)2 (1,5уz)2 = (4х2 1,5уz)(4х2 + 1,5уz);
б) (4a - b)2 - a2 = (4a - b - a)(4a - b + a) = (3a - b)(5a - b). ●
Приклад 2. Обчислити 752 652.
● 752 652 = (75 65)(75 + 65) = 10 140 = 1400. ●
Приклад 3. Розв’язати рівняння (х 3)2 36 = 0.
● (х 3)2 36 = 0; (х 3)2 62 = 0; (х 3 6)(х 3 + 6) = 0;
(х - 9)(х + 3) = 0; х - 9 = 0 або х + 3 = 0; х = 9 або х = -3.
Відповідь. 9; -3. ●
Усно
605. Розкладіть на множники:
a) x2 y2; б) p2 4; в) 16 c2.