Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
479
Добавлен:
24.02.2016
Размер:
22.12 Mб
Скачать

Глава 7. Методы изучения экосистем

ственные критерии подобия модели оригиналу (критерий Рей-нольдса и др.), в экологии таких критериев нет. Возможности идеальных знаковых моделей богаче, чем реальных, так как их создание почти не имеет технических ограничений.

Рис. 7.3. Схема классификации моделей (по В. Д. Федорову и Т. Г. Гильманову, 1980, с изменениями)

Знаковые модели - концептуальные и математические -имеют в экологии большое значение.

Концептуальная модель представляет собой более или менее формализованный вариант традиционного описания изучаемой экосистемы, состоящего из текста, блок-схемы, таблиц, графиков.

В итоговых публикациях Международной биологической прог­раммы 1964 - 1974 гг. представлены концептуальные модели важнейших типов экосистем, обеспеченные количественными дан­ными о динамике численности и биомассы популяций и т. п.

240

Глава 7. Методы изучения экосистем

Концептуальные модели, наряду со многими достоинствами (универ­сальность, гибкость и др.), имеют и недостатки: неоднозначность интерпретации и статичность. Наиболее известно моделирование Великих озер в США (рис. 7.4).

Рис. 7.4. Процесс моделирования управления качеством воды на Великих озерах (по V. Ричардсону, 1979)

Методы математического моделирования при изучении экосистем в динамике более эффективны. При конструировании математических моделей экосистем прослеживаются две тенден­ции. Математики часто берутся за глубокую теоретическую разработку моделей, неадекватность которых известна заранее. А экспериментаторы и натуралисты пытаются включить в модель как можно большее число изученных свойств моделируемого объекта, не заботясь об их значимости. При этом, если реаль­ные процессы неверно оцениваются количественно, то модель,

241

Глава 7. Методы изучения экосистем

естественно, даст неправильную картину экосистемы в целом. Математические модели могут быть классифицированы по рядупризнаков, в соответствии с которыми выбирается аппарат какого-либо раздела математики, призванный служить языком описаниясвойств, структуры и поведения оригинала. Различают априор­ные (лат. a priori - независимо от опыта) И апостериорные (лат. a posteriori -

основанные на опыте) модели. Первые выводятся на основании теорети­ческих посылок, а вторые строятся по эмпирическим данным. Выбор математического аппарата зависит также от состава фак­тической информации. Описание функционирования экосистем характеризуется обычно неравномерностью изученности отдель­ных процессов. Часто не только не известен математический видзависимостей между отдельными компонентами, но вообще отсут­ствуют количественные характеристики процессов.

Попытки создания моделей, совмещающих физико-динамичес­кие и химико-биологические процессы, обычно приводят к исполь­зованиюдифференциальных уравнений. К достоинствампоследних относится принципиальная возможность установления общих положений теории функционирования экосистем. Однако современное состояние некоторых математических дисциплин (теории устойчивости, оптимального управления и др.) не позво­ляет достаточно подробно исследовать системы высокого порядкас существенными нелинейностями связей. Отсюда - стремление к применению обобщенных компонентов и характеристик для сни­жения порядка системы.

Возможность получения картины общих закономерностей жизни экосистем на основании аналитического исследования даже простых теоретических моделей была показана многими авторами. Рассмотрим для примера простую классическую модель роста биомассы микроскопических водорослей в водоеме (фитопланктона) - модель Флеминга (1939). Изменение био­массы в данной модели определяется двумя процессами: цвете­нием водорослей и выеданием их микроскопическими животны­ми (зоопланктоном).

242