Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
479
Добавлен:
24.02.2016
Размер:
22.12 Mб
Скачать

Глава 3. Энергия в экосистемах

Глава 3. Энергия в экосистемах

ности. Если в закрытой системе резко увеличивается биомасса (Б), то уменьшаются затраты энергии, необходимые для поддер­жания упорядоченности системы (Д), которая постепенно разру­шается и погибает.

Экосистемы с энергетической точки зрения представля­ют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей сре­дой энергией и веществом, уменьшая тем самым энтропию внутри себя, но увеличивая ее вовне, в соответствии с законами термодинамики.

Для оптимизации использования энергии природная система создает хранилища концентрированной потенциальной энергии, часть которой тратит на получение новой и поддержание поряд­ка: обеспечивает круговорот веществ, обмен с другими система­ми, создает механизмы устойчивости и др.

Все типы неживых систем регулируются теми же законами термодинамики, которые управляют живыми системами. Разли­чие заключается в том, что живые системы, используя часть имеющейся внутри них запасенной потенциальной энергии, спо­собны самовосстанавливаться и поддерживать порядок, а маши­ны приходится ремонтировать за счет внешней энергии.

Живая материя отличается от неживой прежде всего способ­ностью аккумулировать из окружающего пространства сво­бодную энергию, концентрировать ее и качественно преоб­разовывать, чтобы противостоять росту энтропии внутри себя.

Следовательно, порядок, создаваемый энергетическими пото­ками в экосистемах, связан с изменением качества аккумулирован-ной живыми организмами энергии.

Виды и формы энергии бывают самыми разнообразны­ми. Обычно выделяют два вида энергии: кинетическую и потен­циальную.

Кинетическая энергия зависит от скорости движения и мас­сы материального объекта. Такой энергией обладают движущийсяавтомобиль, летящая пуля, электрически заряженные частицы и др.

Потенциальная энергия - это «запасенная» энергия покоя, которая может быть использована. Это энергия камня, лежащего на земле, заряда динамита, внутренняя энергия атомного ядра, химическая энергия молекул бензина, угля, белков, жиров или любых других органических веществ, потребляемых с пищей.

На самом деле единственным первоисточником энергии, обеспе­чивающим жизнь на Земле, является Солнце. Около 90 % энер­гии, идущей на нагревание Земли и зданий, - это не энергия топлива, а бесплатная и фактически неисчерпаемая прямая солнечная энергия. Если бы не эта энергия, температура на Земле была бы минус 270 °С и земная жизнь вообще не могла бы возникнуть. Солнечная энергия - это не только прямое солнеч­ное тепло, но и различные вторичные формы энергии, возника­ющие при ее превращении в биосфере. К вторичным формамсолнечной энергии относятся энергия падающей и текущей воды (гидроэнергия), ветра, биомассы растений, древесины, ископае­мого топлива и др.

Формы энергии различаются по способности производить полезную работу. Ю. Одум (1986) пишет: «Не все калории одинаковы, т. е. одинаковые количества разных форм энергии могут сильно различаться по своему рабочему потенциалу». Энергия слабого ветра, прибоя может произвести небольшое количество работы. Концентрированные формы энергии (нефть, уголь и др.) обладают высоким рабочим потенциалом. Энергия солнечного света по сравнению с энергией ископаемого топли­ва обладает низкой работоспособностью, а по сравнению с рассеянной низкотемпературной теплотой - высокой.

Поскольку первый закон термодинамики утверждает невоз­можность исчезновения энергии, то может создаться впечатле­ние, что она всегда будет существовать в достаточном количе­стве. Однако бензин в баке автомобиля постепенно исчезает, так же как и энергия батарейки карманного фонарика. Если энергия не может исчезнуть, то что же мы теряем? Ответ один -мы теряем работоспособность энергии, т. е. ее качество.

96

97