Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
477
Добавлен:
24.02.2016
Размер:
22.12 Mб
Скачать

Глава 2. Экосистемы - предмет экологии

Город практически не производит пищу, он только перераба­тывает ее, не очищает воздух, почти не возвращает в круговорот воду и органические вещества, но находится в симбиотических отношениях с окружающей сельской местностью. Он производит и вывозит товары и услуги, деньги и культурные ценности, обога­щая этим сельское население и получая взамен услуги и пищу.

Город можно рассматривать как экосистему только в том случае, если учитываются его обширные пригороды. Одно из имеющихся, к сожалению, препятствий для такого разумного подхода - порочное административное разделение между горо­дом и сельской местностью. Пока городские и областные лиде­ры не научатся ставить общие интересы выше частных, управ­ление городом и областью как единой функциональной эколо­гической системой не может быть реализовано.

Агроэкосистемы, в отличие от городов, являются автотроаЬ-ными экосистемами, т. е. обладают обширным «зеленым по­ясом». Агроэкосистемы отличаются от естественных экосистем (лес, луг, поляна), работающих только на энергии Солнца. Они получают дополнительную энергию в виде мышечных усилий человека и животных, удобрений, пестицидов, орошающей воды, горючего, механизмов, машин и т. п. Для максимизации выхода какого-либо одного продукта человек резко снижает разнообра­зие организмов. Виды растений и животных подвергаются искусст­венному, а не естественному отбору. Сельское хозяйство исполь­зует только 30% свободной от льда суши планеты: около 10 % -пахотные земли и приблизительно 20 % - пастбища.

Условно агроэкосистемы можно разделить на два типа.

Агроэкосистемы доиндустриального периода используют допол­нительную энергию в виде мышечных усилий человека и живот­ных. Они поставляют продукты питания в основном для семьи фермера и частично - на местный рынок.

Интенсивные механизированные агроэкосистемы получают энергетические дотации в виде горючего, химикатов, работы ма­шин. Эти высокопродуктивные системы производят продукты пита-

81

Глава 2. Экосистемы - предмет экологии Глава 2. Экосистемы - предмет экологии

ния в основном на рынок; продукты питания превращаются в товар, играющий важную роль в экономике.

Доиндустриальное сельское хозяйство часто называют прими­тивным и направленным только на выживание. Тем не менее оно очень эффективно, если оценивать по количеству произведенной пищи на единицу затраченной энергии. Например, на огородах со смешанными культурами соотношение полученной и затрачен­ной энергии может составлять 16:1. Напротив, многие механи­зированные агроэкосистемы потребляют часто не меньше энер­гии, чем возвращают в виде продуктов питания. Однако даже хорошо приспособленные доиндустриальные системы, эффектив­но использующие энергию, часто не могут производить достаточ­ного количества избыточных продуктов питания, чтобы прокор­мить огромные города.

Таким образом, неиндустр*иализованное сельское хозяйство эффективно расходует энергию, но оно малотоварно. Как пра­вило, такие агроэкосистемы дают меньший урожай на единицу площади, чем интенсивное механизированное сельское хозяйство. Но, выигрывая в одном, человек проигрывает в другом - ничто не дается даром. Поскольку в развитых странах и интенсивность энергетических субсидий, и урожай, видимо, достигли максиму­ма, повышение вкладов в сельское хозяйство может привести к уменьшению выхода продукции (отрицательная обратная связь).

Может ли человек искусственно создать полноценную экосис­тему вне биосферы? Является ли даже такая совершенная техно­генная система, как космический корабль, в полной мере экоси­стемой? Может ли она долгое время функционировать за преде­лами биосферы? Попытаемся ответить на эти вопросы.

Космический корабль, предназначенный для длительных путе­шествий, представляет собой как бы миниатюрную экосистему, вклю­чающую человека. Пилотируемые космические корабли в настоящее время снабжены модулями жизнеобеспечения запасающего типа: в них частично осуществляется регенерация воды и воздуха лишь физи­ко-химическими методами. Для настоящих регенерационных экосис-

тем, которые могли бы долгое время находиться в космосе, ничего не получая с Земли, по­требовались бы сообщества ра­стительных и крупных животных организмов, которые могли бы использоваться человеком в пищу, значительное видовое разнооб­разие их и большие емкости для воздуха и воды.

Рис. 2.13. Сравнительные объемы атмосферы и океана, приходящиеся на 1 м2 суши (по Ю. Одуму, 1986)

Основная задача, которую предстоит решить, - чем заменить буферную способность атмосфе­ры и океана, благодаря которой очищаются отходы, стабилизиру-

ются и поддерживаются условия жизни в биоссрере в целом. На Земле на 1 м2 суши приходится более 1 000 м3 буферной емкости атмооферы и почти 10 000 м3 океана плюс большие объемы рас­тительности (рис. 2.13).

Атмосфера, океан и растительность выполняют роль накопи-телей и регенераторов отходов. При длительном пребывании че­ловека в космосе часть этой бусрерной функции должны взять на себя механические устройства, работающие на солнечной и, воз­можно, атомной энергии.

Однако, по выводам Национального управления по аэронав-(ике США, на современном этапе развития невозможно создать безопасную и надежную закрытую экологическую систему жизне­обеспечения даже для использования ее на Земле. Создать миниа-тюрную модель биосферы, т. е. искусственную экосистему без притока и оттока вещества и энергии, с полной регенерацией отходов и регуляцией условий, для использования ее в космосе не только сложно, но и очень дорого.

Правда, некоторые энтузиасты освоения космоса, например физик Дж. О'Нейл (1977), предсказывали, что в XXIвеке воз-

82

83