
- •Скопичев в.Г.
- •Глава 1. Химический состав и физические процессы живой материи
- •1.1. Ультраструктурные компоненты клетки
- •1.1.1. Фибриллярные ультраструктуры.
- •1.1.2. Пластинчатые и мембранные ультраструктуры.
- •1.1.3. Зернистые ультраструктуры.
- •1.1.4. Пузырьк0видные и трубчатые ультраструктуры
- •1.2.Морфология клетки
- •1.2.1.Поверхность клетки и пропессы обмена со средой.
- •1.2.2. Строение клеточной поверхности.
- •1.2.3. Различные выросты клеточной поверхности
- •1.2.4. Процессы обмена веществ на уровне клеточной поверхности
- •1.2.5. Роль клеточной поверхности в межклеточных контактах и в обмене
- •1.3. Общая физиология секреторной активности клеток
- •1.3.1. Образование секрета
- •1.3.2. Выведение продуктов секреции из клетки
- •1.3.3.Механизмы управления секрецией
- •1.4. Структуры клеток, обеспечивающие их механическую устойчивость
- •1.4.1. Механическое сопротивление цитоплазмы
- •1.4.2.Специализированные клеточные структуры механического сопротивления
- •1.5. Двигательные функции цитоплазмы
- •1.5.1. Мышечные и мерцательные образования
- •1.5.2. Внутренние движения цитоплазмы
- •1.5.3.Биохимический состав и основные молекулярные механизмы сократимых элементов
- •1.5.4. Движения, контакты и агрегапия клеток
- •1.6. Контакты и сцепления клеток между собой
- •1.7. Агрегация и дезагрегация клеток. Клеточные комплексы.
- •Глава 2.Развитие организма
- •2.1. Оплодотворение
- •2.2. Опыление
- •2.3. Оплодотворение
- •2.4. Ранние этапы эмбрионального развития дробление
- •2.5. Гаструляция
- •Глава 3. Транспорт воды в растении
- •3.1. Поступление воды в растительную клетку
- •Диффузия и осмос
- •Клетка как осмотическая система
- •Поступление ионов в растительную клетку
- •3.2. Пассивное и активное поступления
- •Водный режим растений
- •Общая характеристика водного обмена растительного организма
- •Физические и химические свойства воды
- •Распределение воды в клетке и в организме
- •Водный баланс растения
- •Расходование воды растением - транспирация
- •1. Значение транспирации
- •2. Лист как орган транспирации
- •Влияние внешних условий на степень открытости устьиц
- •Влияние условий на процесс транспирации
- •Поступление и передвижение воды по растению
- •4. Корневая система как орган поглощения воды
- •Основные двигатели водного тока
- •Передвижение воды по растению
- •4.1. Влияние внешних условий на поступление воды в растение
- •Физиологические основы устойчивости растений к засухе
- •Влияние на растения недостатка воды
- •Физиологические особенности засухоустойчивых растений
- •Физиологические основы орошения
- •Глава 5. Питание растении углеродом (фотосинтез)
- •Лист как орган фотосинтеза. Особенности диффузии со2 в листе
- •Хлоропласты, их строение и образование
- •Состав и строение хлоропластов
- •Онтогенез пластид
- •Физиологические особенности хлоропластов
- •Пигменты листа
- •Хлорофиллы
- •Химические свойства хлорофилла
- •Физические свойства хлорофилла
- •Биосинтез хлорофилла
- •Условия образования хлорофилла
- •Каротиноиды
- •Фикобилины
- •Энергетика фотосинтеза
- •Химизм фотосинтеза
- •Происхождение кислорода при фотосинтезе
- •Фотохимический этап фотосинтеза. Циклическое и нециклическое фотосинтетическое фосфорилирование
- •Темновая фаза фотосинтеза — путь превращения углерода
- •Продукты фотосинтеза
- •Влияние условий на интенсивность процесса фотосинтеза
- •Влияние внешних условий на интенсивность процесса фотосинтеза
- •Влияние внутренних факторов на процесс фотосинтеза
- •Дневной ход фотосинтеза
- •Фотосинтез и урожай
- •Физиологическое значение макро- и микроэлементов
- •Макроэлементы
- •Микроэлементы
- •Антагонизм ионов
- •Поступление минеральных солей через корневую систему
- •Корневая система как орган поглощения солей
- •Особенности поступления солей в корневую систему
- •Роль корней в жизнедеятельности растений
- •Поступление и превращение соединений азота в растениях
- •Особенности усвоения молекулярного азота
- •Питание азотом высших растении
- •Азотный обмен растений
- •Почва как источник питательных веществ
- •Питательные вещества в почве и их усвояемость
- •Значение кислотности почвы
- •Значение почвенных микроорганизмов
- •Глава 6. Передвижение питательных веществ по растению
- •Передвижение элементов минерального питания (восходящий ток)
- •Круговорот минеральных веществ в растении [реутилизация]
- •Особенности передвижения органических веществ по растению
- •Общие вопросы дыхательного обмена
- •Аденозингрифосфат, структура и функции
- •Субстраты дыхания
- •Пути дыхательного обмена
- •Глава 8. Развитие растений
- •Типы роста органов растения
- •Культура изолированных тканей
- •Дифференциация тканей
- •Влияние внешних условий на рост
- •Ауксины
- •Гиббереллины
- •Цитокинины
- •Ингибиторы роста
- •Взаимодействие фитогормонов
- •Применение фитогормонов в практике растениеводства
- •Ауксины и их синтетические заменители
- •Ростовые корреляции. Регенерация
- •Движения растений. Тропизмы и настии
- •Физиологическая природа движения растении
- •Физиологические основы покоя растений
- •Покой семян
- •Покой почек
- •Закаливание растений
- •Зимостойкость растений
- •Устойчивость растений к засолению
- •Причины вредного влияния солей
- •9. Физиологические функции у животных и общие механизмы их регуляции
- •9.1. Понятие о внутренней среде организме и гомеостазе
- •9.2. Нейрогуморальные механизмы регуляции физиологических функций
- •Особенности регуляторных механизмов:
- •9.3. Единство нервной и гуморальной регуляции
- •10. Физиология возбудимых тканей.
- •10.1.Понятие о возбудимости.
- •10.1.1. История открытия электрических явлений в возбудимых тканях
- •10.1.2 Ультраструктурная организация клеточной мембраны
- •10.1.3. Потенциал покоя.
- •10.1.4 Механизмы генерации потенциала действия.
- •10.1.5. Ионные каналы.
- •10.1.6. Аккомодация.
- •10.1.7. Закон длительности раздражения.
- •10.1.8. Распространение возбуждения.
- •10.1.8.1. Рефрактерность.
- •10.1.8.2 Передача нервного возбуждения между клетками. Представление о синапсах.
- •10.2.Физиологические свойства мышц.
- •10.2.1. Поперечно-полосатые мышцы.
- •10 .2.1.1. Ультраструктура филаментов.
- •10.2.2.Теория скольжения нитей
- •10.2.3.Электромеханическое сопряжение.
- •10.2.4 Механика мышцы.
- •10.2.5. Энергетика мышцы.
- •10.2.6 Метаболические группы поперечно-полосатых мышц.
- •10.2.7.Гладкие мышцы.
- •11. Физиология системы крови.
- •11.1. Значение и количество крови
- •Количество крови у животных в процентах к массе тела
- •11.2. Физико-химические свойства крови
- •11.3. Гемостаз
- •11.4. Форменные элементы крови
- •11.4.1.Эритроциты
- •11.4.2. Лейкоциты
- •11.4.3. Тромбоциты
- •11.5.Регуляция кроветворения
- •11.6. Механизм образования тканевой жидкости и лимфы
- •Глава 12. Физиология иммунной системы.
- •12.1. Неспецифическая резистентность.
- •12.2. Иммунная система.
- •12.2.1. Органы иммунной системы.
- •12.2.2. Лимфоциты и Макрофаги. Иммуноглобулины.
- •12.2.2.1. Лимфоциты.
- •Эффекторные:
- •12.2.2.2.Иммуноглобулины (Антитела).
- •12.2.2.3. Макрофаги (Моноциты).
- •12.2.3. Иммунный ответ.
- •12.2.3.1 Гуморальный иммунный ответ.
- •12.2.3.2 Клеточный иммунный ответ.
- •ГлАва 13. Физиология пищеварения.
- •13.1. Сущность процесса пищеварения.
- •13.2. Пищеварение в ротовой полости.
- •13.3. Пищеварение в желудке
- •13.3.1. Состав желудочного сока.
- •13.3.2. Двигательная активность желудка.
- •13.4. Особенности желудочного пищеварения у жвачных
- •13.5. Пищеварение в тонкой кишке
- •13.5.1. Состав поджелудочного сока.
- •13.5.2. Состав желчи
- •13.5.3. Кишечный сок.
- •13.5.3. Пищеварение в толстой кишке.
- •13.5.4. Моторика кишечника.
- •13.6. Всасывание.
- •Глава 14.Физиология сердечно-сосудистой системы
- •14.1.2. Свойства сердечной мышцы.
- •14. 1. 4. Регуляция сердечной деятельности.
- •14. 2. Физиология сосудистой системы
- •14.2. 1. Круги кровообращения
- •14.2.2. Основные законы гемодинамики
- •14.2.3. Особенности движения крови в разных сосудах
- •14.4. Регуляция сосудистого тонуса.
- •Сосудосуживающие вещества.
- •Сосудорасширяющие вещества
- •14.2. 5. Механизмы перераспределения крови в организме
- •14.3. Движение лимфы и ее регуляция
- •Глава 15.Физиология дыхания
- •15.1.1.Физиологическая роль отрицательного давления в грудной полости.
- •15.1.2.Механизм вдоха и выдоха.
- •15.1.3. Значение верхних и нижних воздухоносных путей.
- •15.2. Газообмен в легких и тканях.
- •15.3. Транспорт газов кровью.
- •15.3.1. Транспорт кислорода.
- •15.3.2. Транспорт углекислого газа.
- •15.4. Механизмы регуляции дыхания.
- •15.4.1. Дыхательный центр.
- •15.4.2. Саморегуляция вдоха и выдоха.
- •15.4.3. Гуморальная регуляция дыхания.
- •15.5. Особенности дыхания у птиц.
- •Глава 16. Физиология органов выделения
- •16.1. Анатомо-физиологическая характеристика почек
- •16.2 Типы нефронов
- •16.3. Механизм образования мочи
- •16.3.1. Поворотно-противоточный механизм петли Генле
- •16.3.2.Канальцевая секреция в почках.
- •16.3.3. Синтез веществ в почке.
- •16.4. Роль почек в гомеостазе
- •16.5. Регуляция мочеобразования
- •16.6. Механизм и регуляция выведения мочи
- •16.7.Химический состав мочи
- •16.8. Физиология кожи
- •16.8.1. Функции кожи.
- •16.8.2. Образование и отделение пота
- •16.8.3. Регуляция потоотделения
- •Глава 17.Физиология размножения
- •17.1. Физиология репродуктивной системы самцов
- •17.2. Физиология репродуктивной системы самок
- •Особенности половых циклов у разных видов сельскохозяйственных животных
- •Нейро-гуморальная регуляция женских половых функций
- •Оплодотворение
- •17.3.Беременность
- •17.3.1.Плацента
- •17.3.2. Особенности плацентарного кровообращения
- •Особенности кровообращения плода:
- •Физиологические изменения в организме самки во время беременности
- •17.4. Роды
- •Длительность родов у различных животных
- •Регуляция родового процесса осуществляется нервным и гуморальным путем.
- •17.5.Особенности размножения птиц
- •Глава 18. Физиология лактации
- •18.1.Строение молочной железы
- •18.2 Развитие молочной железы
- •18.3 Структурная организация секреторного процесса
- •18.4. Состав молока.
- •18.5.Альвеола
- •18.6.Регуляция секреции молока.
- •18.7.Выведение молока.
- •Глава 19. Обмен веществ и энергии
- •19.1 Белковый (азотистый) обмен
- •19.2. Углеводный обмен
- •19.3. Липидный обмен
- •19.4. Обмен воды
- •19.5. Обмен минеральных веществ
- •19.6. Витамины
- •19.7. Обмен энергии (биоэнергетика)
- •19.8. Терморегуляция
- •Глава 20. Физиология внутренней секреции.
- •20.1. Общая характеристика гормонов
- •20.2. Гипофиз
- •20.3. Щитовидная железа
- •20.4. Паращитовидные (околощитовидные) железы.
- •20.5. Надпочечники
- •20.6. Эндокринная функция поджелудочной железы
- •20.7. Эндокринная функция половых желез
- •20.8. Тимус, эпифиз, тканевые гормоны
- •Глава 21. Физиология центральной нервной системы
- •21.1. Нейроны и синапсы в центральной нервной системе
- •21.2. Рефлекторная деятельность центральной нервной системы
- •21.3. Свойства нервных центров
- •21.4. Торможение в центральной нервной системе
- •21.5. Координация рефлекторных процессов
- •21.6. Спинной мозг
- •21.7. Продолговатый мозг
- •21.8. Средний мозг
- •21.9. Мозжечок
- •21.10. Промежуточный мозг (таламус, гипоталамус, эпиталамус)
- •21.11. Ретикулярная формация (“сетчатое вещество”)
- •21.12. Вегетативная нервная система
- •22. Высшая нервная деятельность
- •22.2. Строение и методы исследования коры больших полушарий
- •22.3. Характеристика условных рефлексов
- •22.4. Основные механизмы деятельности коры больших полушарий
- •22.5. Типы высшей нервной деятельности
- •22.6. Сон и сновидения
- •22.7. Две сигнальные системы действительности
- •Глава 23. Физиология анализаторов
- •23.1. Зрительный анализатор
- •23.2. Слуховой анализатор
- •23.3. Вестибулярный анализатор
- •23.4. Вкусовой анализатор
- •23.5. Обонятельный анализатор
- •23.6. Кожный анализатор
- •Список литературы
Хлоропласты, их строение и образование
Весь процесс фотосинтеза протекает в зеленых пластидах — хлоропластах. Различают три вида пластид: лейкопласты — бесцветные, хромопласты — оранжевые, хлоропласты — зеленые. Именно в хлоропластах сосредоточен зеленый пигмент хлорофилл.
Незеленые растения, например грибы, лишены пластид. Эти растения не обладают способностью к фотосинтезу. В процессе эволюции дифференциация пластид произошла очень рано. Правда, у фотосинтезирующих бактерий и сине-зеленых водорослей пластид еще нет, их роль выполняет окрашенная часть протоплазмы, прилегающая к оболочке. Это наиболее примитивная организация фотосинтетического аппарата. Однако уже у водорослей имеются специальные образования (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, ленточные, в виде пластинок или звезд). Высшие растения характеризуются вполне сформировавшимся типом пластид в форме диска или двояковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсальным аппаратом фотосинтеза. ХИМИЧЕСКИЙ
Состав и строение хлоропластов
Химический состав хлоропластов достаточно сложен и может быть охарактеризован следующими средними данными (% на сухую массу) : белок — 35—55; липиды — 20—30; углеводы — 10; РНК — 2—3; ДНК — до 0,5; хлорофилл — 9; каротиноиды — 4,5.
Важно отметить, что многие белки хлоропластов обладают ферментативной активностью. Действительно, в хлоропластах сосредоточены все ферменты, принимающие участие в процессе фотосинтеза (окислительно-восстановительные, синтетазы, гидролазы). В настоящее время показано, что в хлоропластах, так же как и в митохондриях, имеется своя белоксинтезирующая система.
Многие из ферментов, локализованных в хлоропластах, являются двухкомпонентными. Во многих случаях простетическая группа ферментов — это различные витамины. В хлоропластах сосредоточены многие витамины и их производные (витамины группы В, К, Е, О). В хлоропластах находится 80 7о Ре, 70% 2п, около 50% Си от всего количества этих элементов в листе. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно составляет от 20 до 100 на клетку.
Внутреннее строение хлоропластов, их ультраструктура была раскрыта после того, как появился электронный микроскоп. Оказалось, что хлоропласты окружены двойной оболочкой (мембраной). Толщина каждой оболочки 7,5—10 нм, расстояние между ними 10— 30 нм. Внутреннее пространство хлоропластов пронизано мембранами (ламеллами). Мембраны, соединенные друг с другом, образуют как бы пузырьки — тилакоиды (греч. «тилакоидес» — мешковидный). В хлоропластах тилакоиды двух типов. Короткие тилакоиды собраны в пачки (граны) и расположены друг над другом, напоминая стопку монет. Длинные тилакоиды расположены параллельно друг другу. Короткие тилакоиды состоят из ламелл гран, длинные тилакоиды — ламелл стромы. Все ламеллы погружены в среду зернистого строения — строму. Существует мнение, что ламеллы гран как бы зажаты между ламеллами стромы. Предложена гранулярно-решетчатую модель, согласно которой внутренние пространства всех тилакоидов соединены между собой. У хлоропластов большинства водорослей гран нет, а ламеллы собраны в группы (пачки) по 2—8 штук. Не во всех случаях и у высших растений хлоропласты имеют гранальную структуру. Так, в листьях кукурузы имеются два вида хлоропластов. В клетках мезофилла содержатся мелкие хлоропласты. В клетках обкладки, окружающих листовые сосудистые пучки, хлоропласты крупные и гран не содержат. Ламеллы хлоропластов состоят из глобулярных липопротеиновых субъединиц. При этом белки и липиды связаны друг с другом и образуют комплексы. По мнению Т. Вейера, каждая липопротеиновая субъединица включает пигменты, а также все компоненты электронно-транспортной цепи. На наружной поверхности мембраны тилакоидов сосредоточены гидрофильные группировки белка и галакто- и сульфолипиды. Молекулы хлорофилла определенным образом ориентированы в мембранах. При этом фитольная часть (хвост) погружена в глобулу и находится в контакте с гидрофобными группами белковых молекул. Порфириновые ядра (головка) молекул хлорофилла в основном локализованы в пространстве между соприкасающимися мембранами тилакоидов гран. Молекулы хлорофилла могут быть и в мембранах стромы. В этом случае они находятся внутри субъединиц.