
- •Скопичев в.Г.
- •Глава 1. Химический состав и физические процессы живой материи
- •1.1. Ультраструктурные компоненты клетки
- •1.1.1. Фибриллярные ультраструктуры.
- •1.1.2. Пластинчатые и мембранные ультраструктуры.
- •1.1.3. Зернистые ультраструктуры.
- •1.1.4. Пузырьк0видные и трубчатые ультраструктуры
- •1.2.Морфология клетки
- •1.2.1.Поверхность клетки и пропессы обмена со средой.
- •1.2.2. Строение клеточной поверхности.
- •1.2.3. Различные выросты клеточной поверхности
- •1.2.4. Процессы обмена веществ на уровне клеточной поверхности
- •1.2.5. Роль клеточной поверхности в межклеточных контактах и в обмене
- •1.3. Общая физиология секреторной активности клеток
- •1.3.1. Образование секрета
- •1.3.2. Выведение продуктов секреции из клетки
- •1.3.3.Механизмы управления секрецией
- •1.4. Структуры клеток, обеспечивающие их механическую устойчивость
- •1.4.1. Механическое сопротивление цитоплазмы
- •1.4.2.Специализированные клеточные структуры механического сопротивления
- •1.5. Двигательные функции цитоплазмы
- •1.5.1. Мышечные и мерцательные образования
- •1.5.2. Внутренние движения цитоплазмы
- •1.5.3.Биохимический состав и основные молекулярные механизмы сократимых элементов
- •1.5.4. Движения, контакты и агрегапия клеток
- •1.6. Контакты и сцепления клеток между собой
- •1.7. Агрегация и дезагрегация клеток. Клеточные комплексы.
- •Глава 2.Развитие организма
- •2.1. Оплодотворение
- •2.2. Опыление
- •2.3. Оплодотворение
- •2.4. Ранние этапы эмбрионального развития дробление
- •2.5. Гаструляция
- •Глава 3. Транспорт воды в растении
- •3.1. Поступление воды в растительную клетку
- •Диффузия и осмос
- •Клетка как осмотическая система
- •Поступление ионов в растительную клетку
- •3.2. Пассивное и активное поступления
- •Водный режим растений
- •Общая характеристика водного обмена растительного организма
- •Физические и химические свойства воды
- •Распределение воды в клетке и в организме
- •Водный баланс растения
- •Расходование воды растением - транспирация
- •1. Значение транспирации
- •2. Лист как орган транспирации
- •Влияние внешних условий на степень открытости устьиц
- •Влияние условий на процесс транспирации
- •Поступление и передвижение воды по растению
- •4. Корневая система как орган поглощения воды
- •Основные двигатели водного тока
- •Передвижение воды по растению
- •4.1. Влияние внешних условий на поступление воды в растение
- •Физиологические основы устойчивости растений к засухе
- •Влияние на растения недостатка воды
- •Физиологические особенности засухоустойчивых растений
- •Физиологические основы орошения
- •Глава 5. Питание растении углеродом (фотосинтез)
- •Лист как орган фотосинтеза. Особенности диффузии со2 в листе
- •Хлоропласты, их строение и образование
- •Состав и строение хлоропластов
- •Онтогенез пластид
- •Физиологические особенности хлоропластов
- •Пигменты листа
- •Хлорофиллы
- •Химические свойства хлорофилла
- •Физические свойства хлорофилла
- •Биосинтез хлорофилла
- •Условия образования хлорофилла
- •Каротиноиды
- •Фикобилины
- •Энергетика фотосинтеза
- •Химизм фотосинтеза
- •Происхождение кислорода при фотосинтезе
- •Фотохимический этап фотосинтеза. Циклическое и нециклическое фотосинтетическое фосфорилирование
- •Темновая фаза фотосинтеза — путь превращения углерода
- •Продукты фотосинтеза
- •Влияние условий на интенсивность процесса фотосинтеза
- •Влияние внешних условий на интенсивность процесса фотосинтеза
- •Влияние внутренних факторов на процесс фотосинтеза
- •Дневной ход фотосинтеза
- •Фотосинтез и урожай
- •Физиологическое значение макро- и микроэлементов
- •Макроэлементы
- •Микроэлементы
- •Антагонизм ионов
- •Поступление минеральных солей через корневую систему
- •Корневая система как орган поглощения солей
- •Особенности поступления солей в корневую систему
- •Роль корней в жизнедеятельности растений
- •Поступление и превращение соединений азота в растениях
- •Особенности усвоения молекулярного азота
- •Питание азотом высших растении
- •Азотный обмен растений
- •Почва как источник питательных веществ
- •Питательные вещества в почве и их усвояемость
- •Значение кислотности почвы
- •Значение почвенных микроорганизмов
- •Глава 6. Передвижение питательных веществ по растению
- •Передвижение элементов минерального питания (восходящий ток)
- •Круговорот минеральных веществ в растении [реутилизация]
- •Особенности передвижения органических веществ по растению
- •Общие вопросы дыхательного обмена
- •Аденозингрифосфат, структура и функции
- •Субстраты дыхания
- •Пути дыхательного обмена
- •Глава 8. Развитие растений
- •Типы роста органов растения
- •Культура изолированных тканей
- •Дифференциация тканей
- •Влияние внешних условий на рост
- •Ауксины
- •Гиббереллины
- •Цитокинины
- •Ингибиторы роста
- •Взаимодействие фитогормонов
- •Применение фитогормонов в практике растениеводства
- •Ауксины и их синтетические заменители
- •Ростовые корреляции. Регенерация
- •Движения растений. Тропизмы и настии
- •Физиологическая природа движения растении
- •Физиологические основы покоя растений
- •Покой семян
- •Покой почек
- •Закаливание растений
- •Зимостойкость растений
- •Устойчивость растений к засолению
- •Причины вредного влияния солей
- •9. Физиологические функции у животных и общие механизмы их регуляции
- •9.1. Понятие о внутренней среде организме и гомеостазе
- •9.2. Нейрогуморальные механизмы регуляции физиологических функций
- •Особенности регуляторных механизмов:
- •9.3. Единство нервной и гуморальной регуляции
- •10. Физиология возбудимых тканей.
- •10.1.Понятие о возбудимости.
- •10.1.1. История открытия электрических явлений в возбудимых тканях
- •10.1.2 Ультраструктурная организация клеточной мембраны
- •10.1.3. Потенциал покоя.
- •10.1.4 Механизмы генерации потенциала действия.
- •10.1.5. Ионные каналы.
- •10.1.6. Аккомодация.
- •10.1.7. Закон длительности раздражения.
- •10.1.8. Распространение возбуждения.
- •10.1.8.1. Рефрактерность.
- •10.1.8.2 Передача нервного возбуждения между клетками. Представление о синапсах.
- •10.2.Физиологические свойства мышц.
- •10.2.1. Поперечно-полосатые мышцы.
- •10 .2.1.1. Ультраструктура филаментов.
- •10.2.2.Теория скольжения нитей
- •10.2.3.Электромеханическое сопряжение.
- •10.2.4 Механика мышцы.
- •10.2.5. Энергетика мышцы.
- •10.2.6 Метаболические группы поперечно-полосатых мышц.
- •10.2.7.Гладкие мышцы.
- •11. Физиология системы крови.
- •11.1. Значение и количество крови
- •Количество крови у животных в процентах к массе тела
- •11.2. Физико-химические свойства крови
- •11.3. Гемостаз
- •11.4. Форменные элементы крови
- •11.4.1.Эритроциты
- •11.4.2. Лейкоциты
- •11.4.3. Тромбоциты
- •11.5.Регуляция кроветворения
- •11.6. Механизм образования тканевой жидкости и лимфы
- •Глава 12. Физиология иммунной системы.
- •12.1. Неспецифическая резистентность.
- •12.2. Иммунная система.
- •12.2.1. Органы иммунной системы.
- •12.2.2. Лимфоциты и Макрофаги. Иммуноглобулины.
- •12.2.2.1. Лимфоциты.
- •Эффекторные:
- •12.2.2.2.Иммуноглобулины (Антитела).
- •12.2.2.3. Макрофаги (Моноциты).
- •12.2.3. Иммунный ответ.
- •12.2.3.1 Гуморальный иммунный ответ.
- •12.2.3.2 Клеточный иммунный ответ.
- •ГлАва 13. Физиология пищеварения.
- •13.1. Сущность процесса пищеварения.
- •13.2. Пищеварение в ротовой полости.
- •13.3. Пищеварение в желудке
- •13.3.1. Состав желудочного сока.
- •13.3.2. Двигательная активность желудка.
- •13.4. Особенности желудочного пищеварения у жвачных
- •13.5. Пищеварение в тонкой кишке
- •13.5.1. Состав поджелудочного сока.
- •13.5.2. Состав желчи
- •13.5.3. Кишечный сок.
- •13.5.3. Пищеварение в толстой кишке.
- •13.5.4. Моторика кишечника.
- •13.6. Всасывание.
- •Глава 14.Физиология сердечно-сосудистой системы
- •14.1.2. Свойства сердечной мышцы.
- •14. 1. 4. Регуляция сердечной деятельности.
- •14. 2. Физиология сосудистой системы
- •14.2. 1. Круги кровообращения
- •14.2.2. Основные законы гемодинамики
- •14.2.3. Особенности движения крови в разных сосудах
- •14.4. Регуляция сосудистого тонуса.
- •Сосудосуживающие вещества.
- •Сосудорасширяющие вещества
- •14.2. 5. Механизмы перераспределения крови в организме
- •14.3. Движение лимфы и ее регуляция
- •Глава 15.Физиология дыхания
- •15.1.1.Физиологическая роль отрицательного давления в грудной полости.
- •15.1.2.Механизм вдоха и выдоха.
- •15.1.3. Значение верхних и нижних воздухоносных путей.
- •15.2. Газообмен в легких и тканях.
- •15.3. Транспорт газов кровью.
- •15.3.1. Транспорт кислорода.
- •15.3.2. Транспорт углекислого газа.
- •15.4. Механизмы регуляции дыхания.
- •15.4.1. Дыхательный центр.
- •15.4.2. Саморегуляция вдоха и выдоха.
- •15.4.3. Гуморальная регуляция дыхания.
- •15.5. Особенности дыхания у птиц.
- •Глава 16. Физиология органов выделения
- •16.1. Анатомо-физиологическая характеристика почек
- •16.2 Типы нефронов
- •16.3. Механизм образования мочи
- •16.3.1. Поворотно-противоточный механизм петли Генле
- •16.3.2.Канальцевая секреция в почках.
- •16.3.3. Синтез веществ в почке.
- •16.4. Роль почек в гомеостазе
- •16.5. Регуляция мочеобразования
- •16.6. Механизм и регуляция выведения мочи
- •16.7.Химический состав мочи
- •16.8. Физиология кожи
- •16.8.1. Функции кожи.
- •16.8.2. Образование и отделение пота
- •16.8.3. Регуляция потоотделения
- •Глава 17.Физиология размножения
- •17.1. Физиология репродуктивной системы самцов
- •17.2. Физиология репродуктивной системы самок
- •Особенности половых циклов у разных видов сельскохозяйственных животных
- •Нейро-гуморальная регуляция женских половых функций
- •Оплодотворение
- •17.3.Беременность
- •17.3.1.Плацента
- •17.3.2. Особенности плацентарного кровообращения
- •Особенности кровообращения плода:
- •Физиологические изменения в организме самки во время беременности
- •17.4. Роды
- •Длительность родов у различных животных
- •Регуляция родового процесса осуществляется нервным и гуморальным путем.
- •17.5.Особенности размножения птиц
- •Глава 18. Физиология лактации
- •18.1.Строение молочной железы
- •18.2 Развитие молочной железы
- •18.3 Структурная организация секреторного процесса
- •18.4. Состав молока.
- •18.5.Альвеола
- •18.6.Регуляция секреции молока.
- •18.7.Выведение молока.
- •Глава 19. Обмен веществ и энергии
- •19.1 Белковый (азотистый) обмен
- •19.2. Углеводный обмен
- •19.3. Липидный обмен
- •19.4. Обмен воды
- •19.5. Обмен минеральных веществ
- •19.6. Витамины
- •19.7. Обмен энергии (биоэнергетика)
- •19.8. Терморегуляция
- •Глава 20. Физиология внутренней секреции.
- •20.1. Общая характеристика гормонов
- •20.2. Гипофиз
- •20.3. Щитовидная железа
- •20.4. Паращитовидные (околощитовидные) железы.
- •20.5. Надпочечники
- •20.6. Эндокринная функция поджелудочной железы
- •20.7. Эндокринная функция половых желез
- •20.8. Тимус, эпифиз, тканевые гормоны
- •Глава 21. Физиология центральной нервной системы
- •21.1. Нейроны и синапсы в центральной нервной системе
- •21.2. Рефлекторная деятельность центральной нервной системы
- •21.3. Свойства нервных центров
- •21.4. Торможение в центральной нервной системе
- •21.5. Координация рефлекторных процессов
- •21.6. Спинной мозг
- •21.7. Продолговатый мозг
- •21.8. Средний мозг
- •21.9. Мозжечок
- •21.10. Промежуточный мозг (таламус, гипоталамус, эпиталамус)
- •21.11. Ретикулярная формация (“сетчатое вещество”)
- •21.12. Вегетативная нервная система
- •22. Высшая нервная деятельность
- •22.2. Строение и методы исследования коры больших полушарий
- •22.3. Характеристика условных рефлексов
- •22.4. Основные механизмы деятельности коры больших полушарий
- •22.5. Типы высшей нервной деятельности
- •22.6. Сон и сновидения
- •22.7. Две сигнальные системы действительности
- •Глава 23. Физиология анализаторов
- •23.1. Зрительный анализатор
- •23.2. Слуховой анализатор
- •23.3. Вестибулярный анализатор
- •23.4. Вкусовой анализатор
- •23.5. Обонятельный анализатор
- •23.6. Кожный анализатор
- •Список литературы
14. 1. 4. Регуляция сердечной деятельности.
Сердечная деятельность регулируется внутрисердечными и внесердечными механизмами.
К внутрисердечным механизмам относятся:
Внутриклеточные механизмы, обеспечивающие в каждой клетке сердечной мышцы биохимические процессы и контроль за сохранением морфологических структур и их функций. Внутриклеточные процессы ответственны за рабочую гипертрофию сердца (утолщение миокардиоцитов, увеличение в них количества миофибрилл).
Механизмы межклеточного взаимодействия, обеспечивающие быстрое распространение возбуждения по обоим предсердиям или обоим желудочкам.
Внутрисердечные периферические рефлексы. Рефлекторные дуги их короткие, они замыкаются не в ЦНС, а в нервных ганглиях внутри сердца. В этих узлах находятся афферентные, вставочные и эфферентные нейроны.
Афферентные нейроны возбуждаются при растяжении предсердий кровью в случае венозного застоя. Результатом становится усиление сокращения левого желудочка и перекачивание большего объема крови из вен в аорту. Но так происходит только при нормальном давлении в аорте. Если же давление в аорте повышено, то растяжение предсердий угнетает сокращения сердца, чтобы аорта не оказалась переполненной кровью.
Внесердечная, или экстракардиальная регуляция сердечной деятельности – более высокий уровень приспособления сердца к потребностям организма. Она осуществляется рефлекторными и гуморальными механизмами при участии центральной нервной системы.
Центробежные нервы сердца относятся к вегетативной нервной системе. Эти нервы - симпатические и парасимпатические - состоят из двух нейронов – преганглионарных и постганглионарных.
Симпатические нервы сердца начинаются из грудного отдела спинного мозга (Т1 – Т6) и заканчиваются главным образом в шейном звездчатом ганглии, они называются преганглионарными. В шейном звездчатом ганглии находятся постганглионарные нейроны, их отростки идут к сердцу, они иннервируют миокардиоциты предсердий и желудочков.
Парасимпатические нервы начинаются в продолговатом мозге, преганглионарные волокна идут в составе вагуса (блуждающего нерва) и заканчиваются в интрамуральных ганглиях сердца. Из этих узлов начинаются постганглионарные волокна, которые иннервируют узлы проводящей системы сердца (синусный и атриовентрикулярный).
Таким образом, вегетативные нервы сердца – симпатические и парасимпатические оказывают воздействие на разные структуры сердца: симпатические нервы влияют на сократительные волокна, а парасимпатические контролируют проводящую систему сердца.
Центробежные нервы влияют на все свойства сердца: на возбудимость (батмотропное влияние), скорость распространения возбуждения (дромотропное), силу сокращения (инотропное), частоту сокращений (хронотропное), обмен веществ миокарда (трофическое влияние).Симпатические нервы оказывают стимулирующее, или положительное влияние на все указанные свойства сердца, парасимпатические – тормозящее, или отрицательное.
При сильном раздражении блуждающего нерва сердце может остановиться, но если раздражение продолжается, то сердце снова начинает сокращаться, это явление называется «ускользанием сердца из-под влияния вагуса». Причиной «ускользания» может быть компенсаторное увеличение тонуса симпатических нервов, или же, в связи с отрицательным влиянием вагуса на автоматию синусного узла – проявление автоматии атриовентрикулярного узла.
Центры, регулирующие работу сердца, расположены во многих отделах ЦНС. В продолговатом мозге находится сосудо-двигательный центр, частью которого является центр сердечной деятельности. Отсюда возбуждение передается к сердцу либо по вагусу (его ядра расположены в продолговатом мозге), либо через проводящие пути спинного мозга на симпатические нервы. Центры более высокого уровня находятся в среднем, промежуточном мозге, мозжечке, лимбической системе. В этих отделах происходит координация работы сердца с другими системами организма, осуществляется приспособление сердечной деятельности к потребностям всего организма, что реализуется посредством изменения тонуса вегетативных нервов или включением гуморальной регуляции.
В состоянии физиологического покоя и во время сна преобладает тонус парасимпатического отдела нервной системы, поэтому в покое сердце работает на 1/5 – 1/6 своей мощности. При нагрузках – физических, эмоциональных в большем тонусе находится симпатическая нервная система и сердце усиливает работу в 5-6 раз. Поэтому их не считают антагонистами, между этими отделами имеются реципрокные отношения. Это понятие означает согласованность в работе нервных центров, когда возбуждение одного из них автоматически приводит к торможению другого. Кора больших полушарий осуществляет наиболее тонкое приспособление работы сердца к сиюминутным потребностям организма. Здесь находятся центры всех анализаторов, оценивающих внешние воздействия на организм, состояние внутренней среды и физиологические потребности всех его органов и тканей. Информация от анализаторов перерабатывается в нервных центрах, ответственных за работу сердца и по симпатическим и парасимпатическим нервам передается к сердцу.Кроме безусловных, врожденных рефлексов на сердце в течение жизни у животных приобретаются индивидуальные, или условные рефлексы. Они возникают при обязательном участии коры. Так, у спортивных лошадей тахикардия начинается до начала забега, раздражителями становятся все события на ипподроме перед скачками.
Теперь рассмотрим те рецепторные поля, раздражение которых вызывает изменения работы сердца. Сердце может отвечать на раздражение любых экстеро- или интерорецепторов. Примерами экстероцептивных сердечных рефлексов могут быть рефлексы Ашнера (надавливание на глазное яблоко), рефлекс Гольца (механическое раздражение брюшной стенки или органов брюшной полости – желудка, кишечника). Оба рефлекса дают отрицательные инотропный и хронотропный эффекты.
Большое значение в регуляции физиологических функций имеют сосудистые рефлексогенные зоны – участки в крупных кровеносных сосудах, где находятся скопления различных рецепторов. Обратите внимание на эти жизненно важные зоны, так как они участвуют в рефлекторной регуляции многих других функций, например - сосудистого тонуса, дыхания.
Зона дуги аорты. Находящиеся в дуге аорты механорецепторы, их называют прессо- или барорецепторами, реагируют на растяжение аорты при повышении в ней давления. Импульсы от рецепторов передаются по аортальному нерву, или нерву депрессору в продолговатый мозг и оттуда по блуждающему нерву – к сердцу. Работа сердца уменьшается.
Зона каротидного синуса, или синокаротидная зона. Она находится в разветвлениях сонных артерий на наружные и внутренние ветви. Прессорецепторы синокаротидной зоны также реагируют возбуждением на повышенное давление в сонных артериях и рефлекторно, через продолговатый мозг и блуждающий нерв тормозят работу сердца.
При уменьшении артериального давления прессорецепторы обеих зон не раздражаются и тонус парасимпатических нервов снижается, что приводит к реципрокному увеличению тонуса симпатической системы и восстановлению давления. Поскольку давление в аорте и в сонных артериях увеличивается при каждой систоле желудочков, то постоянное раздражение указанных рецепторов поддерживает постоянно высокий тонус парасимпатических нервов сердца, поэтому сердце и не работает с полным усилием в состоянии покоя. Однако при физическом или психическом напряжении преобладает тонус симпатической системы, и указанные рецепторные зоны не реагируют на повышение артериального давления.
Третья зона расположена в устье полых вен. Прессорецепторы этой зоны возбуждаются при повышении давления в полых венах, при венозном застое крови. От рецепторов устья полых вен возбуждение передается по спинномозговым нервам в спинной мозг, оттуда по симпатическим нервам – к сердцу. Сердце сильнее сокращается, перекачивает кровь из вен в артерии и давление в полых венах нормализуется. Этот рефлекс называется по имени автора – рефлекс Бейнбриджа.
Таким образом, сосудистые рефлексогенные зоны регулируют работу сердца при колебаниях артериального или венозного давления, способствуют их нормализации.
Учащение и усиление работы сердца наблюдается также при повышении температуры крови, при болевых симптомах, во время физической нагрузки, при сильных эмоциях – страхе, гневе, радости.
Гуморальная регуляция сердечной деятельности осуществляется физиологически активными веществами, образующимися в самом организме.
Нервные медиаторы– ацетилхолин, норадреналин.
Ацетилхолин образуется в окончаниях парасимпатических нервов сердца. Ацетилхолин взаимодействует с холинорецепторами постсинаптических мембран , что повышает проницаемость клеточных мембран для К+. В результате увеличивается выход К+ из клетки, происходит гиперполяризация мембраны и увеличивается порог возбуждения. Вследствие этого уменьшается ответ миокардиоцитов на импульсы тока, наблюдаются отрицательные инотропные и хронотропные эффекты.
Норадреналин – медиатор симпатических адренергических нервов. Норадреналин взаимодействует с бета-адренорецепторами сердечных волокон, что приводит к деполяризации мембран и повышает возбудимость сердечной мышцы. Одновременно норадреналин вызывает расширение коронарных артерий и улучшает питание сердца.
Гормоны – адреналин, тироксин, глюкагон. Все эти гормоны усиливают работу сердца. Адреналин – гормон мозгового слоя надпочечников, а также медиатор адренергических нервов, подобно норадреналину. Адреналин – очень сильный стимулятор, именно адреналин ответственен за эмоциональную реакцию сердца. Тироксин – гормон щитовидной железы, он улучшает обменные процессы в сердце и повышает чувствительность сердца к симпатическим воздействиям. Глюкагон улучшает питание сердечной мышцы, повышая уровень глюкозы в крови.
Электролиты оказывают существенное влияние на работу сердца. Кальций повышает возбудимость клеток миокарда, активизирует фосфорилазу. Ионы кальция участвуют и в процессах генерации потенциалов, и в сократительных механизмах. При большой концентрации кальция в крови сердце может остановиться из-за нарушения разобщения актиновых и миозиновых нитей в миофибриллах.
Калий при небольшом превышении концентрации в крови уменьшает потенциал покоя, это приводит к деполяризации мембран главного пейсмекера (синусного узла). Увеличивается выход ацетилхолина из парасимпатических нервных окончаний и работа сердца снижается. Однако высокое содержание калия уменьшает, замедляет работу сердца и может вызвать его остановку в фазе диастолы. Снижение же содержания калия в крови ниже физиологической нормы активизирует автоматию сердца, но при этом активизируются и латентные пейсмекеры сердца, что может привести к нарушению сердечного ритма – аритмиям.
Уменьшение содержания кислорода в крови, увеличение углекислого газа, ацидоз угнетают сократительную активность миокарда.