Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фізика. Конспект лекцій 2010.doc
Скачиваний:
94
Добавлен:
24.08.2019
Размер:
108.6 Mб
Скачать

1.3 Кінематика обертального руху твердого тіла

1.3.1 Обертальний рух твердого тіла відносно нерухомої вісі обертання. Вектор кутового переміщення. Кутова швидкість. Кутове прискорення.

Найпростіший випадок обертального руху твердого тіла – це рух відносно нерухомої в просторі вісі обертання. Дійсно, при такому русі всі точки тіла описують кола, центри яких лежать на одній нерухомій прямій, яка називається віссю обертання (рис. 1.3.1). Очевидно, що при такому обертальному русі твердого тіла радіус кіл всіх точок тіла за той же час повертаються на один і той же кут. Отже, для опису обертального руху і вісі обертання достатньо однієї кутової координати, однієї ступені свободи.

Кут повороту φ радіуса кола будь якої точки – скалярна величина. Але напрям обертання може бути довільним. Тому для характеристики обертального руху вводиться поняття вектора кутового переміщення. Цей вектор проводять вздовж вісі обертання і його напрям визначають за правилом свердлика (правого гвинта) або правилом правої руки. Застосування цих правил легко зрозуміти з рис.1.3.1. Модуль вектора переміщення чисельно дорівнює куту повороту, радіус кола будь якої точки твердого тіла при його обертанні.

Але вводячи поняття вектора кутового переміщення, треба мати на увазі, що такий вектор не є істинним або, ще кажуть, псевдовектор. Дійсно, при обертанні твердого тіла в напрямі осі обертання ніщо не переміщається, просто домовились проводити такий вектор, напрям якого визначаємо за правилом свердлика. Зовсім інша справа з вектором переміщення точки або тіла. Якщо тіло рухається в даному напрямі, то такий напрям дійсно є і напрямом вектора переміщення, хочемо цього чи не хочемо без всяких домовленостей мусить співпадати з напрямом переміщення, він «належить» тілу і такий вектор переміщення є істинним. А якій точці тіла, що обертається, «належить» вектор кутового переміщення, в якій точці початок цього вектора? Вектор кутового переміщення не зв’язаний ні з однією точкою тіла, а початок його можна брати де завгодно - як вам подобається, навіть і за кілометр від тіла, лиш би співпадав з віссю обертання. Тому вектор кутового переміщення ще інколи називають коаксіальним ід латинського axis-вісь), тобто співпадає з віссю обертання. Хоча вектор кутового переміщення не істинний, а придуманий, це не «позбавляє» його приймати участь в усіх правилах векторної алгебри і по суті описувати кінематику обертового руху. Дійсно, адже в математичних формулах кінематики обертального руху необхідно враховувати напрям обертання і тут незамінним стає вектор кутового переміщення .

Якщо за будь-які, але рівні проміжки час, якими вони не були б малі, тіло, що обертається, здійснює однакові кутові переміщення, то такий обертовий рух буде рівномірним і фізична величина, яка пропорційна вектору кутового переміщення до часу, за який здійснене таке переміщення називається кутовою швидкістю і позначається ω і вимірюється в рад ⁄с .

. (1.3.1.)

Так як кутове переміщення – вектор, то, відповідно, кутова швидкість теж буде вектором, що співпадає з вектором переміщення, тобто вздовж вісі обертання. А що стосується початку цього вектора, то початок можна брати де завгодно (як вам зручно для рисунку).

Звичайно, щоб визначити вектор кутової швидкості спочатку знаходять його модуль

. (1.3.2)

Час, за який тіло при обертальному русі здійснює один повний оберт, називається періодом обертання.

За час Т, рівний періоду обертання, кут повороту становитиме , тому кутову швидкість через період обертання визначається наступною формулою

. (1.3.3)

Величина, обернена періоду обертання називається частотою обертання і дорівнює числу обертів, яке здійснює тіло за одиницю часу при рівномірному обертанні

. (1.3.4)

На практиці часто визначають частоту обертання в обертах за хвилину. Особливо це стосується роботи двигунів, турбін і т.п.

Знаючи частоту обертання, легко визначити кутову швидкість

. (1.3.5)

Якщо за час при нерівномірному обертальному русі кутове переміщення становитиме то відношення цього переміщення до часу, за який відбулось таке переміщення визначає середню кутову швидкість

. (1.3.6)

Чим менший проміжок часу, тим менше нерівномірний рух відрізняється від рівномірного і в границі, коли проміжок часу стає нескінченно малий, миттєва швидкість визначається як похідна від кутового переміщення по часу

. (1.3.7)

Якщо за будь які, але рівні проміжки часу кутова швидкість змінюється за модулем на одну і ту ж саму величину, то такий рух буде рівнозмінним, рівноприскореним або рівносповільненим (порівняйте з означенням рівнозмінного руху матеріальної точки на ст. ) Відношення зміни кутової швидкості до часу, за який відбулась така зміна, називається кутовим прискоренням

. (1.3.8)

Одиниця вимірювання кутового прискорення рад ⁄ с2.

У загальному випадку, коли рух є змінним (змінюється саме кутове прискорення), то миттєве кутове прискорення буде визначатись як границя, до якої прямує середнє прискорення за умови

, (1.3.9)

тобто миттєве кутове прискорення є першою похідною від кутової швидкості по часу. Так як в свою чергу кутова швидкість – це похідна від кута повороту по часу, то можна записати, що кутове прискорення є другою похідною від кутового переміщення по часу

. (1.3.10)

Всі попередні формули кутової швидкості та кутового прискорення записані у скалярній формі, які визначають абсолютне значення цих величин. Але враховуючи, що кутове переміщення є вектором (точніше псевдовектором), то, відповідно, кутова швидкість та прискорення теж будуть векторами (точніше псевдо або коаксіальними)

, (1.3.11)

. (1.3.12)

Так, на рис. 1.3.1 вказаний вектор кутової швидкості, який має той самий напрям, що і вектор кутового переміщення. Що стосується вектора кутового прискорення, то у випадку прискореного руху він буде співпадати з напрямом векторної зміни кутової швидкості, а якщо рух сповільнений, то напрям вектора кутового прискорення протилежний.