- •6.040103 – «Геологія»
- •1 Кінематика
- •1.1 Кінематика матеріальної точки
- •Система відліку
- •1.1.2 Матеріальна точка. Способи опису руху матеріальної точки
- •1.1.3 Рівномірний рух. Швидкість рівномірного руху
- •1.1.4 Нерівномірний рух. Середня швидкість. Миттєва швидкість
- •1.1.5 Рівнозміний рух. Прискорення. Змінний рух. Миттєве прискорення
- •1.1.6 Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення
- •Абсолютно тверде тіло та число ступенів його свободи
- •1.3 Кінематика обертального руху твердого тіла
- •1.3.1 Обертальний рух твердого тіла відносно нерухомої вісі обертання. Вектор кутового переміщення. Кутова швидкість. Кутове прискорення.
- •1.3.2. Зв'язок між кутовими і лінійними кінематичними величинами обертального руху
- •1.4 Кінематика відносного руху. Переносне прискорення. Прискорення каріоліса
- •1. Чим більша відстань від центра обертання, тим більша лінійна швидкість обертання. Тобто, маємо зміну швидкості, викликану лише переміщенням точок .
- •1.5 Короткий зміст основних питань кінематики
- •4. Способи опису руху матеріальної точки:
- •6. Миттєва швидкість
- •7. Рівнозмінний рух. Прискорення.
- •8. Змінний рух. Середнє прискорення. Миттєве прискорення.
- •9. Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення.
- •10. Поступальний рух тіла.
- •11. Обертальний рух тіла.
- •16. Кутове прискорення.
- •17. Зв'язок між лінійними і кутовими кінематичними величинами обертового руху.
- •3. Одна пряма рухається паралельно сама собі з швидкістю v1, а друга – зі швидкістю v2.. Питання: з якою швидкістю v3 рухається точка перетину цих прямих?
- •2.Задачі на рівно змінний рух
- •1. Автомобіль проходить гальмівний шлях 20 м. Визначити час руху автомобіля до зупинки та модуль прискорення, якщо початкова швидкість 54 км/.
- •3. Град, падаючи з хмари за останню секунду свого падіння пролітає шлях, що становить 0,19 всієї висоти. Визначити час падіння та висоту, з якає падає град. Опором повітря нехтувати.
- •3 Рух тіла, кинутого горизонтально
- •4 Рух тіла, кинутого під кутом до горизонту
- •5.Задачі на середню і миттєву швидкість та миттєве прискорення
- •2. Першу половину часу автомобіль рухався з швидкістю 60 км/год, а другу половину часу з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •3. Першу половину шляху автомобіль рухався з швидкістю 60 км/год, а другу половину шляху з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •6.Задачі кінематики обертального руху
- •1. Колесо починає обертатись зі стану спокою і, зробивши 100 обертів, досягає кутової швидкості 62,8 рад/с. Вважаючи рух рівноприскореним, визначити час та кутове прискорення даного обертового руху.
- •4. У вибраній системі відліку з декартовими координатами кінематичні рівняння матеріальної точки мають наступний вигляд:
- •5. Задача-тест.
- •1.7 Контрольні питання з кінематики
- •2 Динаміка матеріальної точки (тіла) при поступальному русі. Закони ньютона. Сили в механіці. Гравітація
- •2.1 Динаміка матеріальної точки (тіла) при поступальному русі. Закони Ньютона
- •2.2 Сили в природі. Сили в механіці
- •2.2.1 Сили тертя
- •2.2.2 Сили пружності
- •2.3 Гравітація
- •2.3.1 Закони Кеплера. Закон Всесвітнього тяжіння
- •3. Квадрати періодів обертання планет навколо Сонця відносяться як куби великих піввісей їх орбіт:
- •2.3.2 Експериментальне визначення гравітаційної сталої. Дослід Кавендиша
- •2.3.3 Гравітаційна взаємодія тіл довільної форми
- •4 Гравітаційне поле. Напруженість гравітаційного поля
- •5 Елементи теорії векторного поля. Теорема Остроградського-Гауса
- •6 Гравітаційне поле Землі (поле тіла сферичної форми)
- •7 Аномалії гравітаційного поля Землі. Поняття про гравітаційну
- •2.4 Рух тіл в полі тяжіння. Вага тіла. Невагомість. Штучні супутники
- •2.4.1 Вага тіла
- •2.4.2 Рух тіла у полі тяжіння у вертикальному напрямі. Перевантаження. Невагомість
- •2.4.3 Криволінійний рух тіла у полі тяжіння
- •2.4. 4 Вплив обертання Землі на вагу тіл
- •1 Тіло на полюсі
- •2 Тіло на екваторі
- •3 Тіло на довільній широті
- •5 Штучні супутники Землі
- •2.6 Короткий зміст основних питань динаміки
- •3. Сили в природі. Сили в механіці.
- •4. Сили тертя.
- •5. Сили пружності.
- •6. Закони Кеплера.
- •Планети рухаються по еліпсах, в одному з фокусів яких знаходиться Сонце (рис.2.4.2).
- •7. Закон Всесвітнього тяжіння
- •8. Експериментальне визначення гравітаційної сталої. Дослід Кавендиша.
- •9. Гравітаційна взаємодія тіл довільної форми
- •10. Гравітаційне поле
- •10. Вага тіла
- •1. Потік вектора
- •2.7 Приклади розвязування задач
- •1. Рух тіла в горизонтальному напрямі під дією декількох сил
- •2. Дано:
- •5. Рух тіла під дією змінної сили.
- •6. Рух тіла по похилій площині
- •7. Динаміка руху тіла по колу
- •Випадок руху тіла по колу у вертикальній площині – рух тіла на нитці.
- •10. Який період обертання у горизонтальній площині тіла, підвішеного на нитці довжиною l, якщо нитка утворює з вертикаллю кут α?
- •8. Закон всесвітнього тяжіння. Гравітаційне поле
- •1 Визначити силу притягання між тонким кільцем радіуса r і масою м та матеріальною точкою масою m, яка знаходиться на відстані l від центра кільця.
- •2. Матеріальна точка масою m знаходиться на віддалі a від нескінченно довгої тонкої нитки з лінійною густиною . Визначити силу, з якою притягаються така нитка і тіло точкової маси.
- •2.7 Контрольні питання з динаміки
- •3. Закони збереження в механіці
- •3.1 Закон збереження імпульсу
- •3.2 Центр мас. Теорема про рух центра мас
- •3.3 Реактивний рух
- •3.4 Реактивний рух в природі. Живі ракети
- •3.5 Робота сталої і змінної сил. Потужність
- •3.6 Енергія. Загальний підхід до поняття енергії
- •3.7 Кінетична енергія матеріальної точки (тіла) при поступальному русі
- •3.8 Робота сил тяжіння. Потенціальна енергія тіла в полі тяжіння
- •3.9 Закон збереження енергії в механіці
- •3.10 Застосування законів збереження до співудару двох тіл
- •3.11 Основні напрями альтернативної енергетики
- •1. Вітроенергетика
- •2. Геліоенергетика
- •3. Геотермальна енергетика
- •1. Вітроенергетика
- •2. Альтернативна гідроенергетика
- •3.12 Короткий зміст основних питань законів збереження в механіці
- •1. Закон збереження імпульсу
- •2. Центр мас. Теорема про рух центра мас
- •3. Реактивний рух
- •4. Робота сталої і змінної сил. Потужність
- •5. Енергія. Кінетична і потенціальна енергія
- •6. Закон збереження енергії в механіці.
- •3.13 Приклади розв’язування задач
- •1. Імпульс. Закон збереження імпульсу
- •1. М’ячик масою 200 г вільно падає з висоти 5м на горизонтальну поверхню. Вважаючи удар абсолютно пружним, визначити зміну імпульсу при такому ударі (рис.3.13.1).
- •3. Два тіла рухаються назустріч одне одному з швидкостями . Після абсолютно непружного удару ці тіла стали рухатись разом з швидкістю . Визначити відношення мас цих тіл.
- •4. З самохідної гарматної установки загальною масою 8 т вистрілюють снаряд масою 5 кг зі швидкістю 1200 м∕ с під кутом 600 до горизонту. Визначити швидкість віддачі установки.
- •3.14 Контрольні питання
- •4 Динаміка обертального руху твердого тіла відносно нерухомої осі обертання
- •4.1 Кінетична енергія обертального руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •4.2 Основне рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання
- •4.3 Момент імпульсу. Закон збереження моменту імпульсу
- •4.4 Моменти інерції різних тіл. Теорема Штейнера
- •3. Момент інерції однорідного диска або циліндра
- •4. Момент інерції конуса
- •5. Момент інерції однорідної суцільної кулі
- •6. Момент інерції тонкостінної сфери
- •4.5 Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •4.6 Гіроскопічний ефект. Прецесія гіроскопа
- •4.7 Застосування гіроскопів та гіроскопічних ефектів
- •4.8 Короткий зміст основних питань динаміки обертового руху твердого тіла
- •Кінетична енергія обертового руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •Основне рівняння динаміки обертового руху твердого тіла
- •3. Момент імпульсу. Закон збереження моменту імпульсу
- •4. Моменти інерції різних тіл. Теорема Штейнера
- •5. Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •Гіроскопічний ефект. Прецесія гіроскопа
- •Застосування гіроскопів та гіроскопічних ефектів
- •4.9 Приклади розв’язування задач
- •2. Перевірка основного рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання.
- •5.2 Рівняння Бернуллі
- •5.3 Наслідки з рівняння Бернуллі
- •5.3.1 Швидкість витікання рідини через невеликий отвір
- •5.3.2 Горизонтально розташована трубка течії. Вимірювання швидкості течії
- •5.3.3 Застосування наслідків з рівняння Бернуллі в техніці
- •5.4 Внутрішнє тертя в рідинах і газах (в’язкість)
- •5.5 Течія Пуазейля. Формула Пуазейля
- •5.6 Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •5.7 Елементи реології
- •1. Ньютонівські та неньютонівські системи
- •2 Експериментальні методи вивчення в’язкості
- •2. Ротаційні віскозиметри
- •3 Метод Стокса
- •5.8 Короткий зміст основних питань механіки рідин і газів
- •8. Наслідки з рівняння Бернуллі.
- •2. Горизонтально розташована трубка течії. Вимірювання швидкості течії.
- •3. Застосування наслідків з рівняння Бернуллі в техніці.
- •4. Природні явища, де мають місце наслідки з рівняння Бернуллі.
- •9. Внутрішнє тертя в рідинах і газах (в’язкість).
- •10. Течія Пуазейля. Формула Пуазейля.
- •11. Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •12. Елементи реології.
- •1. Ньютонівські та неньютонівські системи.
- •Експериментальні методи вивчення в’язкості
- •1. Капілярні віскозиметри
- •2. Ротаційні віскозиметри
- •3. Метод Стокса
- •5.9 Приклади розв’язування задач
- •1. Швидкість течії води у широкій частині труби дорівнює 20 см ∕с. Яка швидкість течії у вузькій частині, що має діаметр у 4 рази менший від діаметра широкої частини?
- •2 . З отвору площею поперечного перерізу зі швидкістю у вертикальному напрямі витікає струмина рідин. Якою буде площа поперечного перерізу струмини на висоті ?
- •6 Механічні властивості твердих тіл
- •6.1 Основні види пружних деформацій твердого тіла
- •1. Одностороння деформація розтягу (стиснення).
- •2. Деформація зсуву.
- •3. Деформація кручення.
- •4. Деформація прогину.
- •5. Деформація стиснення (або розтягу).
- •6.2 Твердість тіл
3.1 Закон збереження імпульсу
З акони Ньютона настільки потужні фундаментальні закони, що з них випливають інші фундаментальні закони, одним з яких є закон збереження імпульсу. Цей закон справедливий для, так званої, замкнутої системи, тобто такої, на тіла якої не діють зовнішні сили або їх рівнодійна дорівнює нулю.
Тіла можуть діяти тільки між собою – ці сили називають внутрішніми. Нехай замкнута система складається з частинок, які рухаються з різними швидкостями і стикаються між собою, не виходячи за межі замкнутої системи (рис.3.1.1). Наприклад, на частинку під номером діє сила зі сторони частинки з номером і, навпаки, на -ту частинку діє сила . Запишемо другий закон Ньютона через зміну імпульсу для кожної частинки, враховуючи, що на цю частинку можуть діяти інші частинки:
( . (3.1.1)
В цих рівняннях перший індекс – це номер частинки, на яку діють інші тіла, другий індекс – номер частинки, яка діє на частинку з першим індексом. Звичайно, що двох однакових індексів не може бути, частинка сама на себе не діє. Додаючи рівняння і враховуючи, що ; ........ будемо мати:
. (3.1.2)
Це можливо лише тоді, коли під знаком диференціала є стала величина, тобто
. (3.1.3)
Отримали закон збереження імпульсу для замкнутої системи, який стверджує, що геометрична сума імпульсів частинок замкнутої системи є величина стала. Враховуючи позначення , цей закон запишеться:
. (3.1.4)
В основі закону збереження імпульсу лежить однорідність простору, тобто однаковість властивостей простору в усіх його точках. Тут «однаковість» треба розуміти в тому, що паралельне перенесення замкнутої системи з одного місця простору в інший без зміни взаємного розташування і швидкостей частинок не змінює механічних властивостей даної системи. При цьому мається на увазі, що замкнутість системи не порушується.
3.2 Центр мас. Теорема про рух центра мас
В фізиці введення кожної нової величини завжди обґрунтоване, немає виводу формули заради виводу. Як приклад цього покажемо, що для замкнутої системи, яка складається з матеріальних точок, доцільно ввести особливу фізичну величину, яку назвемо центром мас системи. Наприклад, є частинок (матеріальних точок), необхідно математично описати цю систему. Скористаємось векторним методом опису руху частинки. Виберемо тіло відліку і тоді положення кожної точки буде визначатись „своїм” радіусом-вектором (рис. 3.2.1).
Таким чином, для векторного способу даної системи необхідно мати рівнянь виду . Тоді виникає питання, а чи не можна спростити математичний опис такої замкнутої системи і як це зробити. Відповідь на це треба шукати в тій величині, яка є сталою для всієї замкнутої системи, тобто в законі збереження імпульсу. Запишемо цей закон, враховуючи, що
, (3.2.1) або
. (3.2.2)
Вираз в дужках є векторна сума, яку можна записати у вигляді
, (3.2.3)
тобто замість векторів маємо один вектор , який дорівнює
. (3.2.4)
Цей вектор визначає положення особливої точки замкнутої системи, в якій „зібрана” вся маса системи . Ця точка називається центром мас системи.
Ввівши поняття центра мас системи, який визначається вектором 3.2.4 рівняння 3.2.2 прийме простий вигляд
. (3.2.5)
Т ак, як – швидкість центра мас системи, то вираз вказує на те, що швидкість центра мас системи є величина стала, а прискорення, як похідна від сталої швидкості, дорівнює нулю. Отже, отримаємо ще одне фундаментальне твердження про властивість замкнутої системи –
Теорему про рух центра мас такої системи:
центр мас замкнутої системи під дією внутрішніх сил не може набути прискорення, у відсутності зовнішніх сил він рухається рівномірно прямолінійно або знаходиться в стані спокою.
А тепер згадаємо знаменитого барона Мюнхаузена, який, сидячи на коні, сам себе і коня витягнув з болота, взявшись за чуба (рис.3.2.2). Тобто, під дією внутрішніх сил (тягнув сам себе за чуба), всупереч фундаментальній фізичній теоремі про рух центра мас системи, все ж таки зрушив з місця (з болота) центр мас цієї системи (барон+кінь).
І, як не дивно, в наш час знаходяться послідовники барона Мюнхаузена, які всупереч фундаментальному закону фізики про рух центра мас системи намагаються створити машину, яка б рухалась тільки під дією внутрішніх сил. Тут і нашумівша в один час (1962 рік) машина, створена страховим агентом Діном. Останні спроби створити, так званий, безопорний двигун, який би рухався тільки за рахунок внутрішніх сил, датується 2008 роком. Зайдіть в інтернат на сайт «Безопорные двигатели» і Ви знайдете описи найрізноманітніших технічних конструкцій, які ніби дозволяють пересуватись в просторі всій системі тільки за рахунок зміни внутрішнього стану системи без будь якого відокремлення її частини, як це має місце в ракетних двигунах. Але чомусь ці конструкції не працюють і не будуть працювати, так і ніколи не будуть працювати вічні двигуни. Про неможливість безопорного руху влучно висловився Архімед ще в другому столітті до нашої ери у крилатій фразі – дайте мені точку опори і я підніму Землю. Так ось, всі спроби створити безопорний двигун приречені на невдачу, так само, як неможливо Архімеду без точки опори зрушити Землю.