Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Навигация и лоция.pdf
Скачиваний:
8238
Добавлен:
08.02.2016
Размер:
9.95 Mб
Скачать

ГЛАВА 10. КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ ИСПОЛЬЗУЕМЫЕ В НАВИГАЦИИ

10.1. Классификация картографических проекций

Для получения плоского изображения земной поверхности нужно сначала нанести на плоскость систему координатных линий, которая соответствовала бы таким же линиям на сфере.

Имея нанесенную на плоскость систему меридианов и параллелей, можно теперь нанести на эту сетку любые точки Земли.

Картографическая сетка – условное изображение географической сетки земных меридианов и параллелей на карте в виде прямых или кривых линий.

Картографическая проекция – способ построения картографической сетки на плоскости и изображение на ней сферической поверхности Земли, подчиненный определенному математическому закону.

Картографические проекции по характеру искажений делятся на:

1.Равноугольные (конформные) – проекции, не искажающие углов. Сохраняется подобие фигур. Масштаб изменяется с изменением широты (φ) и долготы (λ). Отношение площадей не

сохраняется на карте. (о. Гренландия≈ Африке; на самом деле S Африки ≈ 30,1 млн. км2. а S Гренландии ≈ 2,1 млн. км2., то есть в 13,8 раза больше.

2.Равновеликие (эквивалентные) – проекции, на которых масштаб везде одинаков и площади на картах пропорциональны соответствующим площадям на Земле. Равенства углов и подобия фигур не сохраняются. Масштаб длин в каждой точке не сохраняется по разным направлениям.

3.Произвольные – проекции, заданные несколькими условиями, но не обладающие ни свойствами равноугольности, ни свойствами равновеликости.

Картографические проекции по способу построения картографической сетки делятся на:

1.Цилиндрические – проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность цилиндра, касающегося условного глобуса (или секущего его), с последующей разверткой этого цилиндра на плоскость.

Прямая цилиндрическая проекция → ось цилиндра совпадает с осью Земли;

Поперечная цилиндрическая проекция → ось цилиндра перпендикулярна оси Земли;

Косая цилиндрическая проекция→ ось цилиндра наклонена к о си Земли под углом, отличным от 0° и 90°.

2.Конические – проекции, на которых проецирование выполняется не на цилиндр, а на конус. По аналогии с цилиндрическими, конические также могут быть прямыми, поперечными или косыми.

3.Азимутальные – проекции, в которых меридианы – радиальные прямые, исходящие из одной точки под углами, равными, соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов (ортографические, внешние,

стереографические, центральные, полярные, экваториальные, горизонтные).

Из всего многообразия картографических проекций, более подробно рассмотрены те из них, которые в той или иной степени применяются в судовождении.

10.2. Поперечная цилиндрическая проекция

Поперечная цилиндрическая проекция применяется для составления морских навигационных карт и карт-сеток на приполюсные районы для φГ > 75÷80°N(S).

Как и нормальная цилиндрическая проекция Меркатора (см. п. 6.2), эта проекция является равноугольной (не искажает углы).

При построении и использовании карт в данной проекции применяется система квазигеографических координат («квази» (лат.) – как бы»), которая получается следующим образом

(рис. 10.1):

Рис. 10.1. Поперечная цилиндрическая проекция

Северный полюс условно помещается в точку с координатами: φГ = 0°, λГ = 180° (р-н Тихого океана), а южный полюс – в точку с координатами: φГ = 0°, λГ = 0° (р-н Гвинейского залива).

Полученные точки называются квазиполюсами: PNq – северным, PSq – южным.

Проведя квазимеридианы и квазипараллели относительно квазиполюсов, получим новую систему координат, повернутую на 90° относительно географической.

Координатными осями этой системы будут:

1.начальный квазимеридиан – большой круг, проходящий через северный

географический полюс (PN) и квазиполюсы (PNq и PSq), он совпадает с географическим (λГ = 0° и λГ = 180°) Гринвичским (начальным) меридианом;

2.квазиэкватор – большой круг, проходящий через географический полюс (PN) и точки на экваторе с долготами: λГ = 90°Е (р-н Индийского океана) и λГ = 90°W (р-н Галапагоских островов).

Координатными линиями этой системы являются:

3.квазимеридианы – большие круги, проходящие через квазиполюсы;

4.квазипараллели – малые круги, плоскости которых параллельны плоскости квазиэкватора.

Положение любой точки на поверхности Земли на картах в поперечной цилиндрической проекции определяется квазиширотой (φq) и квазидолготой (λq).

Квазиширота (φq) → угол при центре Земли (шара) между плоскостью квазиэкватора и радиусом, проведенным в данную точку земной поверхности. Квазиширота определяет

положение квазипараллелей; отсчитывается от квазиэкватора к квазиполюсам: к PNq → + φq и к

PSq → –φq от 0° до 90°.

Квазидолгота (λq) → двугранный угол при квазиполюсе между плоскостями начального квазимеридиана и квазимеридиана данной точки. Квазидолгота определяет положение

квазимеридианов; отсчитывается от географического полюса PN по квазиэкватору к востоку (+λq) и к западу (–λq) от 0° до 180°.

Началом отсчета квазигеографических координат является географический северный полюс

(т. PN).

Основные уравнения поперечной цилиндрической равноугольной проекции имеют вид:

y = R · λq; m = n = sec φq

где

– радиус Земли (м);

m и n – частные масштабы по квазимеридиану и квазипараллели.

где а = 3437,74′.

Для эллипсоида Красовского: а = 6378245 м.

Переход от географических координат к квазикоординатам выполняется по формулам:

(10.1)

(10.2)

(10.3)

(10.4)

sin φq = −cos φ · cos λ;

tg λq = ctg φ · sin λ

(10.5)

sin φ = −cos φq · cos λq;

tg λ = −ctg φq · sin λq

(10.6)

Прямой линией на такой карте изображается квазилоксодромия, пересекающая квазимеридианы под одним и тем же квазикурсом Кq (рис. 10.2).

Рис. 10.2. Квазилоксодромия

Локсодромия, вследствие кривизны географических меридианов, сходящихся на полюсе, будет изображаться кривой линией, обращенной выпуклостью к экватору.

Ортодромия же представит собой кривую малой кривизны, обращенную выпуклостью в сторону ближайшего квазиполюса.

Таким образом, при построении квазигеографической сетки карты используются формулы, аналогичные формулам для нормальной проекции Меркатора с заменой в них географических координат квазигеографическими.

Главный масштаб карт и карт-сеток относят к квазиэкватору.

Географические меридианы изображаются кривыми, близкими к прямым линиям. Географические параллели изображаются кривыми линиями, близкими к окружностям.

Квазикурс (Кq) – угол между квазисеверной частью квазимеридиана и направлением носовой части продольной оси судна (отсчитывается по часовой стрелке от 0° до 360°).

Для перехода от географических направлений к направлениям в квазигеографической системе координат используется угол перехода Q – угол между географическим меридианом и квазимеридианом, значение которого можно получить из треугольника АPNPNq (рис. 10.1).

 

(10.7)

Кq = ИК − Q

(10.8)

В широтах >80°, когда соs φq ≈ 1, получим:

 

sin Q = sin λ

(10.9)

т.е. в высоких широтах угол перехода практически равен долготе точки.

Прокладка курса на такой карте относительно географических или квазигеографических

меридианов осуществляется по формуле:

 

ИК = Кq + λ; Кq = ИК − λ

(10.10)

Для прокладки расстояний необходимо пользоваться специальными вертикальными шкалами с линейным масштабом в морских милях, находящимися за боковыми рамками карт.

Для приполюсных районов Северного Ледовитого океана (СЛО) издаются карты М 1:500.000, на которых красным цветом нанесены квазипараллели, а черным цветом – географические меридианы и параллели с двойной оцифровкой красным и зеленым цветом. Это позволяет использовать карту-сетку в двух районах, симметричных относительно географических меридианов 0°…..180° и 90°Е…..90°W.

По аналогии с нормальной проекцией Меркатора на картах и картах-сетках в поперечной проекции Меркатора прямой линией изображается квазилоксодромия – кривая на поверхности Земли, пересекающая квазимеридианы под постоянным углом Кq (при φq ≤ 15° ее можно принимать за кратчайшую линию).

Уравнение квазилоксодромии:

 

λq2 λq1 = tg Кq · (Dq2 Dq1)

(10.11)

где λq2 λq1 – разность квазидолгот точек;

Dq2 Dq1 – разность квазимеридиональных частей (табл. 26 «МТ-75» или табл. 2.28а «МТ-2000»).

Уравнение (10.11) используется при аналитическом счислении в квазигеографической системе координат.

Если известен главный масштаб карты или карты-сетки

МГ = 1 : CГ

(10.12)

по квазиэкватору, то частный масштаб

МТ = 1 : CТ

(10.13)

в точке с квазиширотой φq вычисляется по формуле:

МТ = МГ · sec φqТ

(10.14)

или

 

CТ = CГ · cos φqТ

(10.15)

(масштаб карт увеличивается по мере удаления от квазиэкватора).

 

10.3. Перспективные картографические проекции

Перспективные проекции применяются для составления некоторых справочных и вспомогательных карт (обзорные карты обширных районов, ортодромические карты, ледовые карты и пр.).

Эти проекции представляют собой частный случай азимутальных проекций.

(Азимутальные проекции – проекции, в которых меридианами являются радиальные прямые, исходящие из одной точки (центральной точки) под углами, равными соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов).

Рис. 10.3. Перспективные проекции

В перспективных проекциях (рис. 10.3) поверхность Земли (сферы) переносится на картинную плоскость методом проецирования с помощью пучка прямых, исходящих из одной точки – точки зрения (ТЗ).

Картинная плоскость может отстоять от поверхности сферы на некотором расстоянии (КП1), касаться сферы (КП2), или пересекать ее.

Точка зрения (т. О) лежит в одной из точек на перпендикуляре к картинной плоскости, проходящем через центр сферы.

Точку пересечения картинной плоскости с перпендикуляром называют центральной точкой карты (ЦТ).

Взависимости от положения точки зрения (ТЗ) одна и та же точка (т. К0) будет отстоять на различных расстояниях ρ от ЦТ карты, что и будет определять характер искажений, присущих данной проекции.

Наиболее распространенными перспективными проекциями являются – гномоническая

(центральная) и стереографическая.

Вгномонической проекции точка зрения (ТЗ) совпадает с центром сферы (ТЗ → в т. О1).

Сетка меридианов и параллелей карты строится по формулам, связывающим прямоугольные координаты точек с их географическими координатами.

а)

б)

в)

Рис. 10.4. Гномонические проекции

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]