
- •6.040103 – «Геологія»
- •1 Кінематика
- •1.1 Кінематика матеріальної точки
- •Система відліку
- •1.1.2 Матеріальна точка. Способи опису руху матеріальної точки
- •1.1.3 Рівномірний рух. Швидкість рівномірного руху
- •1.1.4 Нерівномірний рух. Середня швидкість. Миттєва швидкість
- •1.1.5 Рівнозміний рух. Прискорення. Змінний рух. Миттєве прискорення
- •1.1.6 Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення
- •Абсолютно тверде тіло та число ступенів його свободи
- •1.3 Кінематика обертального руху твердого тіла
- •1.3.1 Обертальний рух твердого тіла відносно нерухомої вісі обертання. Вектор кутового переміщення. Кутова швидкість. Кутове прискорення.
- •1.3.2. Зв'язок між кутовими і лінійними кінематичними величинами обертального руху
- •1.4 Кінематика відносного руху. Переносне прискорення. Прискорення каріоліса
- •1. Чим більша відстань від центра обертання, тим більша лінійна швидкість обертання. Тобто, маємо зміну швидкості, викликану лише переміщенням точок .
- •1.5 Короткий зміст основних питань кінематики
- •4. Способи опису руху матеріальної точки:
- •6. Миттєва швидкість
- •7. Рівнозмінний рух. Прискорення.
- •8. Змінний рух. Середнє прискорення. Миттєве прискорення.
- •9. Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення.
- •10. Поступальний рух тіла.
- •11. Обертальний рух тіла.
- •16. Кутове прискорення.
- •17. Зв'язок між лінійними і кутовими кінематичними величинами обертового руху.
- •3. Одна пряма рухається паралельно сама собі з швидкістю v1, а друга – зі швидкістю v2.. Питання: з якою швидкістю v3 рухається точка перетину цих прямих?
- •2.Задачі на рівно змінний рух
- •1. Автомобіль проходить гальмівний шлях 20 м. Визначити час руху автомобіля до зупинки та модуль прискорення, якщо початкова швидкість 54 км/.
- •3. Град, падаючи з хмари за останню секунду свого падіння пролітає шлях, що становить 0,19 всієї висоти. Визначити час падіння та висоту, з якає падає град. Опором повітря нехтувати.
- •3 Рух тіла, кинутого горизонтально
- •4 Рух тіла, кинутого під кутом до горизонту
- •5.Задачі на середню і миттєву швидкість та миттєве прискорення
- •2. Першу половину часу автомобіль рухався з швидкістю 60 км/год, а другу половину часу з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •3. Першу половину шляху автомобіль рухався з швидкістю 60 км/год, а другу половину шляху з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •6.Задачі кінематики обертального руху
- •1. Колесо починає обертатись зі стану спокою і, зробивши 100 обертів, досягає кутової швидкості 62,8 рад/с. Вважаючи рух рівноприскореним, визначити час та кутове прискорення даного обертового руху.
- •4. У вибраній системі відліку з декартовими координатами кінематичні рівняння матеріальної точки мають наступний вигляд:
- •5. Задача-тест.
- •1.7 Контрольні питання з кінематики
- •2 Динаміка матеріальної точки (тіла) при поступальному русі. Закони ньютона. Сили в механіці. Гравітація
- •2.1 Динаміка матеріальної точки (тіла) при поступальному русі. Закони Ньютона
- •2.2 Сили в природі. Сили в механіці
- •2.2.1 Сили тертя
- •2.2.2 Сили пружності
- •2.3 Гравітація
- •2.3.1 Закони Кеплера. Закон Всесвітнього тяжіння
- •3. Квадрати періодів обертання планет навколо Сонця відносяться як куби великих піввісей їх орбіт:
- •2.3.2 Експериментальне визначення гравітаційної сталої. Дослід Кавендиша
- •2.3.3 Гравітаційна взаємодія тіл довільної форми
- •4 Гравітаційне поле. Напруженість гравітаційного поля
- •5 Елементи теорії векторного поля. Теорема Остроградського-Гауса
- •6 Гравітаційне поле Землі (поле тіла сферичної форми)
- •7 Аномалії гравітаційного поля Землі. Поняття про гравітаційну
- •2.4 Рух тіл в полі тяжіння. Вага тіла. Невагомість. Штучні супутники
- •2.4.1 Вага тіла
- •2.4.2 Рух тіла у полі тяжіння у вертикальному напрямі. Перевантаження. Невагомість
- •2.4.3 Криволінійний рух тіла у полі тяжіння
- •2.4. 4 Вплив обертання Землі на вагу тіл
- •1 Тіло на полюсі
- •2 Тіло на екваторі
- •3 Тіло на довільній широті
- •5 Штучні супутники Землі
- •2.6 Короткий зміст основних питань динаміки
- •3. Сили в природі. Сили в механіці.
- •4. Сили тертя.
- •5. Сили пружності.
- •6. Закони Кеплера.
- •Планети рухаються по еліпсах, в одному з фокусів яких знаходиться Сонце (рис.2.4.2).
- •7. Закон Всесвітнього тяжіння
- •8. Експериментальне визначення гравітаційної сталої. Дослід Кавендиша.
- •9. Гравітаційна взаємодія тіл довільної форми
- •10. Гравітаційне поле
- •10. Вага тіла
- •1. Потік вектора
- •2.7 Приклади розвязування задач
- •1. Рух тіла в горизонтальному напрямі під дією декількох сил
- •2. Дано:
- •5. Рух тіла під дією змінної сили.
- •6. Рух тіла по похилій площині
- •7. Динаміка руху тіла по колу
- •Випадок руху тіла по колу у вертикальній площині – рух тіла на нитці.
- •10. Який період обертання у горизонтальній площині тіла, підвішеного на нитці довжиною l, якщо нитка утворює з вертикаллю кут α?
- •8. Закон всесвітнього тяжіння. Гравітаційне поле
- •1 Визначити силу притягання між тонким кільцем радіуса r і масою м та матеріальною точкою масою m, яка знаходиться на відстані l від центра кільця.
- •2. Матеріальна точка масою m знаходиться на віддалі a від нескінченно довгої тонкої нитки з лінійною густиною . Визначити силу, з якою притягаються така нитка і тіло точкової маси.
- •2.7 Контрольні питання з динаміки
- •3. Закони збереження в механіці
- •3.1 Закон збереження імпульсу
- •3.2 Центр мас. Теорема про рух центра мас
- •3.3 Реактивний рух
- •3.4 Реактивний рух в природі. Живі ракети
- •3.5 Робота сталої і змінної сил. Потужність
- •3.6 Енергія. Загальний підхід до поняття енергії
- •3.7 Кінетична енергія матеріальної точки (тіла) при поступальному русі
- •3.8 Робота сил тяжіння. Потенціальна енергія тіла в полі тяжіння
- •3.9 Закон збереження енергії в механіці
- •3.10 Застосування законів збереження до співудару двох тіл
- •3.11 Основні напрями альтернативної енергетики
- •1. Вітроенергетика
- •2. Геліоенергетика
- •3. Геотермальна енергетика
- •1. Вітроенергетика
- •2. Альтернативна гідроенергетика
- •3.12 Короткий зміст основних питань законів збереження в механіці
- •1. Закон збереження імпульсу
- •2. Центр мас. Теорема про рух центра мас
- •3. Реактивний рух
- •4. Робота сталої і змінної сил. Потужність
- •5. Енергія. Кінетична і потенціальна енергія
- •6. Закон збереження енергії в механіці.
- •3.13 Приклади розв’язування задач
- •1. Імпульс. Закон збереження імпульсу
- •1. М’ячик масою 200 г вільно падає з висоти 5м на горизонтальну поверхню. Вважаючи удар абсолютно пружним, визначити зміну імпульсу при такому ударі (рис.3.13.1).
- •3. Два тіла рухаються назустріч одне одному з швидкостями . Після абсолютно непружного удару ці тіла стали рухатись разом з швидкістю . Визначити відношення мас цих тіл.
- •4. З самохідної гарматної установки загальною масою 8 т вистрілюють снаряд масою 5 кг зі швидкістю 1200 м∕ с під кутом 600 до горизонту. Визначити швидкість віддачі установки.
- •3.14 Контрольні питання
- •4 Динаміка обертального руху твердого тіла відносно нерухомої осі обертання
- •4.1 Кінетична енергія обертального руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •4.2 Основне рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання
- •4.3 Момент імпульсу. Закон збереження моменту імпульсу
- •4.4 Моменти інерції різних тіл. Теорема Штейнера
- •3. Момент інерції однорідного диска або циліндра
- •4. Момент інерції конуса
- •5. Момент інерції однорідної суцільної кулі
- •6. Момент інерції тонкостінної сфери
- •4.5 Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •4.6 Гіроскопічний ефект. Прецесія гіроскопа
- •4.7 Застосування гіроскопів та гіроскопічних ефектів
- •4.8 Короткий зміст основних питань динаміки обертового руху твердого тіла
- •Кінетична енергія обертового руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •Основне рівняння динаміки обертового руху твердого тіла
- •3. Момент імпульсу. Закон збереження моменту імпульсу
- •4. Моменти інерції різних тіл. Теорема Штейнера
- •5. Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •Гіроскопічний ефект. Прецесія гіроскопа
- •Застосування гіроскопів та гіроскопічних ефектів
- •4.9 Приклади розв’язування задач
- •2. Перевірка основного рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання.
- •5.2 Рівняння Бернуллі
- •5.3 Наслідки з рівняння Бернуллі
- •5.3.1 Швидкість витікання рідини через невеликий отвір
- •5.3.2 Горизонтально розташована трубка течії. Вимірювання швидкості течії
- •5.3.3 Застосування наслідків з рівняння Бернуллі в техніці
- •5.4 Внутрішнє тертя в рідинах і газах (в’язкість)
- •5.5 Течія Пуазейля. Формула Пуазейля
- •5.6 Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •5.7 Елементи реології
- •1. Ньютонівські та неньютонівські системи
- •2 Експериментальні методи вивчення в’язкості
- •2. Ротаційні віскозиметри
- •3 Метод Стокса
- •5.8 Короткий зміст основних питань механіки рідин і газів
- •8. Наслідки з рівняння Бернуллі.
- •2. Горизонтально розташована трубка течії. Вимірювання швидкості течії.
- •3. Застосування наслідків з рівняння Бернуллі в техніці.
- •4. Природні явища, де мають місце наслідки з рівняння Бернуллі.
- •9. Внутрішнє тертя в рідинах і газах (в’язкість).
- •10. Течія Пуазейля. Формула Пуазейля.
- •11. Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •12. Елементи реології.
- •1. Ньютонівські та неньютонівські системи.
- •Експериментальні методи вивчення в’язкості
- •1. Капілярні віскозиметри
- •2. Ротаційні віскозиметри
- •3. Метод Стокса
- •5.9 Приклади розв’язування задач
- •1. Швидкість течії води у широкій частині труби дорівнює 20 см ∕с. Яка швидкість течії у вузькій частині, що має діаметр у 4 рази менший від діаметра широкої частини?
- •2 . З отвору площею поперечного перерізу зі швидкістю у вертикальному напрямі витікає струмина рідин. Якою буде площа поперечного перерізу струмини на висоті ?
- •6 Механічні властивості твердих тіл
- •6.1 Основні види пружних деформацій твердого тіла
- •1. Одностороння деформація розтягу (стиснення).
- •2. Деформація зсуву.
- •3. Деформація кручення.
- •4. Деформація прогину.
- •5. Деформація стиснення (або розтягу).
- •6.2 Твердість тіл
3. Два тіла рухаються назустріч одне одному з швидкостями . Після абсолютно непружного удару ці тіла стали рухатись разом з швидкістю . Визначити відношення мас цих тіл.
Д
ано:
два тіла
,
напрями протилежні
після непружного
удару
----------------------------------------
До удару імпульс системи дорівнює
.
Після абсолютно
непружного удару тіла рухаються як одне
ціле масою
з швидкістю
,
так що імпульс тіл після такого
непружного удару становить:
.
Тоді, згідно закону збереження імпульсу:
.
Переходячи до
проекцій на вибраний напрям (вісь ОХ)
та враховуючи числові дані умови задачі,
можна записати
.
4. З самохідної гарматної установки загальною масою 8 т вистрілюють снаряд масою 5 кг зі швидкістю 1200 м∕ с під кутом 600 до горизонту. Визначити швидкість віддачі установки.
Дано:
загальна маса
двох тіл;
відокремлюється
зі швидкістю
під кутом 600 горизонту.
--------------------------------
До пострілу імпульс системи (гармата + снаряд) дорівнює нулю. Система замкнута, тому після взаємодії її імпульс зберігається (теж дорівнює нулю):
,
звідки
.
Знак «мінус» вказує на протилежний напрям швидкості другого тіла (гармати).
В проекція на
вибраний напрям (вісь ОХ) і, враховуючи,
що
,
будемо мати
.
Підставляючи числові значення, отримаємо, що модуль швидкості віддачі даної гармати при такому пострілі дорівнює:
м.
Розглянута задача про віддачу при пострілі – це, по суті, задача про реактивний рух. Але в ракетах маємо справу з реактивним рухом тіла змінної маси, адже при згоранні палива маса ракети зменшується. Тому пропонується розв’язати наступну задачу. Будемо самі конструкторами космічних кораблів.
Необхідно вивести на навколоземну орбіту одноступеневий космічний апарат масою 500 кг, надавши йому першої космічної швидкості 7,91 км∕ с. Яка для цього потрібна маса палива, якщо швидкість витікання газів, що утворюються при його згорання дорівнює 2 км∕ с.
Згідно рівняння Ціолковського
визначимо необхідну масу палива, яка забезпечить при згоранні необхідну швидкість ракеті:
Підставивши всі числові значення величин, наведених в умові задачі, отримаємо:
.
Строго кажучи, в ці 26500 кг входить і маса ракети. Тому маса палива буде становити 26500 кг–500 кг = 26000 кг, тобто 26 т, і це за умови стовідсоткового коефіцієнта корисної дії двигунів ракети, який насправді не перевищує 50% .
Щоб більш глибоко зрозуміти закони збереження, доцільно розглянути наступну задачу, в якій присутні всі приклади законів збереження. Надалі побачимо тут непружний удар, закон збереження імпульсу, кінетична і потенціальна енергія та закон збереження і перетворення енергії.
Тіло (кулька)
масою
рухається зі швидкістю
і попадає у дерев’яний брусок масою
та застрягає у ньому. Брусок підвішений
на невагомій нитці довжиною
.
Після такого удару нитка з бруском
відхиляється від вертикалі на кут
.
Встановити зв’язок між всіма величинами,
які характеризують дану систему,
наприклад визначити максимальний кут
відхилення нитки від вертикалі.
1. До удару імпульс системи визначається тільки імпульсом першого тіла. Друге тіло (брусок) нерухоме (рис.3.13.5):
.
2. У результаті непружного удару, коли перше тіло (кулька) застрягає у другому (позиція 2 рис.3.13.5), тіла рухаються як одне ціле з швидкістю так, що імпульс системи дорівнює:
.
Згідно закону збереження імпульсу:
,
звідки модуль швидкість тіл після удару становить:
і їх кінетична енергія дорівнює
.
3. При
подальшому русі системи її кінетична
енергія переходить у потенціальну і
на висоті
,
яка відповідає максимальному відхиленню,
потенціальна енергія
дорівнює кінетичній енергії. Прирівнюючи
значення цих енергій, отримаємо, що
після такої непружної взаємодії два
тіла, як одне ціле, піднімуться на висоту
від свого попереднього положення:
.
Що стосується кута відхилення , то його можна визначити з простих геометричних співвідношень:
.
Підставивши значення висоти , отримаємо:
Застосування законів збереження не тільки спрощує розв’язування багатьох задач, але дозволяє зрозуміти суть фізичних явищ, про які йде мова у задачах. У попередніх розділах кінематики та динаміки були наведені приклади такого застосування законів збереження. Наприклад, задача з кінематики про рух тіла, кинутого під кутом до горизонту, дуже просто розв’язувалась застосуванням закону збереження і перетворення енергії (див.1.6.4). Цей самий закон збереження і перетворення енергії дозволив без інтегрального обчислення розв’язати задачу динаміки про визначення швидкості шнура, який зісковзує зі столу (див.2.7, задача 3). Так само значно спрощувалась задача динаміки руху тіла по похилій площині (див.2.7, задача 4).