
- •6.040103 – «Геологія»
- •1 Кінематика
- •1.1 Кінематика матеріальної точки
- •Система відліку
- •1.1.2 Матеріальна точка. Способи опису руху матеріальної точки
- •1.1.3 Рівномірний рух. Швидкість рівномірного руху
- •1.1.4 Нерівномірний рух. Середня швидкість. Миттєва швидкість
- •1.1.5 Рівнозміний рух. Прискорення. Змінний рух. Миттєве прискорення
- •1.1.6 Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення
- •Абсолютно тверде тіло та число ступенів його свободи
- •1.3 Кінематика обертального руху твердого тіла
- •1.3.1 Обертальний рух твердого тіла відносно нерухомої вісі обертання. Вектор кутового переміщення. Кутова швидкість. Кутове прискорення.
- •1.3.2. Зв'язок між кутовими і лінійними кінематичними величинами обертального руху
- •1.4 Кінематика відносного руху. Переносне прискорення. Прискорення каріоліса
- •1. Чим більша відстань від центра обертання, тим більша лінійна швидкість обертання. Тобто, маємо зміну швидкості, викликану лише переміщенням точок .
- •1.5 Короткий зміст основних питань кінематики
- •4. Способи опису руху матеріальної точки:
- •6. Миттєва швидкість
- •7. Рівнозмінний рух. Прискорення.
- •8. Змінний рух. Середнє прискорення. Миттєве прискорення.
- •9. Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення.
- •10. Поступальний рух тіла.
- •11. Обертальний рух тіла.
- •16. Кутове прискорення.
- •17. Зв'язок між лінійними і кутовими кінематичними величинами обертового руху.
- •3. Одна пряма рухається паралельно сама собі з швидкістю v1, а друга – зі швидкістю v2.. Питання: з якою швидкістю v3 рухається точка перетину цих прямих?
- •2.Задачі на рівно змінний рух
- •1. Автомобіль проходить гальмівний шлях 20 м. Визначити час руху автомобіля до зупинки та модуль прискорення, якщо початкова швидкість 54 км/.
- •3. Град, падаючи з хмари за останню секунду свого падіння пролітає шлях, що становить 0,19 всієї висоти. Визначити час падіння та висоту, з якає падає град. Опором повітря нехтувати.
- •3 Рух тіла, кинутого горизонтально
- •4 Рух тіла, кинутого під кутом до горизонту
- •5.Задачі на середню і миттєву швидкість та миттєве прискорення
- •2. Першу половину часу автомобіль рухався з швидкістю 60 км/год, а другу половину часу з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •3. Першу половину шляху автомобіль рухався з швидкістю 60 км/год, а другу половину шляху з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •6.Задачі кінематики обертального руху
- •1. Колесо починає обертатись зі стану спокою і, зробивши 100 обертів, досягає кутової швидкості 62,8 рад/с. Вважаючи рух рівноприскореним, визначити час та кутове прискорення даного обертового руху.
- •4. У вибраній системі відліку з декартовими координатами кінематичні рівняння матеріальної точки мають наступний вигляд:
- •5. Задача-тест.
- •1.7 Контрольні питання з кінематики
- •2 Динаміка матеріальної точки (тіла) при поступальному русі. Закони ньютона. Сили в механіці. Гравітація
- •2.1 Динаміка матеріальної точки (тіла) при поступальному русі. Закони Ньютона
- •2.2 Сили в природі. Сили в механіці
- •2.2.1 Сили тертя
- •2.2.2 Сили пружності
- •2.3 Гравітація
- •2.3.1 Закони Кеплера. Закон Всесвітнього тяжіння
- •3. Квадрати періодів обертання планет навколо Сонця відносяться як куби великих піввісей їх орбіт:
- •2.3.2 Експериментальне визначення гравітаційної сталої. Дослід Кавендиша
- •2.3.3 Гравітаційна взаємодія тіл довільної форми
- •4 Гравітаційне поле. Напруженість гравітаційного поля
- •5 Елементи теорії векторного поля. Теорема Остроградського-Гауса
- •6 Гравітаційне поле Землі (поле тіла сферичної форми)
- •7 Аномалії гравітаційного поля Землі. Поняття про гравітаційну
- •2.4 Рух тіл в полі тяжіння. Вага тіла. Невагомість. Штучні супутники
- •2.4.1 Вага тіла
- •2.4.2 Рух тіла у полі тяжіння у вертикальному напрямі. Перевантаження. Невагомість
- •2.4.3 Криволінійний рух тіла у полі тяжіння
- •2.4. 4 Вплив обертання Землі на вагу тіл
- •1 Тіло на полюсі
- •2 Тіло на екваторі
- •3 Тіло на довільній широті
- •5 Штучні супутники Землі
- •2.6 Короткий зміст основних питань динаміки
- •3. Сили в природі. Сили в механіці.
- •4. Сили тертя.
- •5. Сили пружності.
- •6. Закони Кеплера.
- •Планети рухаються по еліпсах, в одному з фокусів яких знаходиться Сонце (рис.2.4.2).
- •7. Закон Всесвітнього тяжіння
- •8. Експериментальне визначення гравітаційної сталої. Дослід Кавендиша.
- •9. Гравітаційна взаємодія тіл довільної форми
- •10. Гравітаційне поле
- •10. Вага тіла
- •1. Потік вектора
- •2.7 Приклади розвязування задач
- •1. Рух тіла в горизонтальному напрямі під дією декількох сил
- •2. Дано:
- •5. Рух тіла під дією змінної сили.
- •6. Рух тіла по похилій площині
- •7. Динаміка руху тіла по колу
- •Випадок руху тіла по колу у вертикальній площині – рух тіла на нитці.
- •10. Який період обертання у горизонтальній площині тіла, підвішеного на нитці довжиною l, якщо нитка утворює з вертикаллю кут α?
- •8. Закон всесвітнього тяжіння. Гравітаційне поле
- •1 Визначити силу притягання між тонким кільцем радіуса r і масою м та матеріальною точкою масою m, яка знаходиться на відстані l від центра кільця.
- •2. Матеріальна точка масою m знаходиться на віддалі a від нескінченно довгої тонкої нитки з лінійною густиною . Визначити силу, з якою притягаються така нитка і тіло точкової маси.
- •2.7 Контрольні питання з динаміки
- •3. Закони збереження в механіці
- •3.1 Закон збереження імпульсу
- •3.2 Центр мас. Теорема про рух центра мас
- •3.3 Реактивний рух
- •3.4 Реактивний рух в природі. Живі ракети
- •3.5 Робота сталої і змінної сил. Потужність
- •3.6 Енергія. Загальний підхід до поняття енергії
- •3.7 Кінетична енергія матеріальної точки (тіла) при поступальному русі
- •3.8 Робота сил тяжіння. Потенціальна енергія тіла в полі тяжіння
- •3.9 Закон збереження енергії в механіці
- •3.10 Застосування законів збереження до співудару двох тіл
- •3.11 Основні напрями альтернативної енергетики
- •1. Вітроенергетика
- •2. Геліоенергетика
- •3. Геотермальна енергетика
- •1. Вітроенергетика
- •2. Альтернативна гідроенергетика
- •3.12 Короткий зміст основних питань законів збереження в механіці
- •1. Закон збереження імпульсу
- •2. Центр мас. Теорема про рух центра мас
- •3. Реактивний рух
- •4. Робота сталої і змінної сил. Потужність
- •5. Енергія. Кінетична і потенціальна енергія
- •6. Закон збереження енергії в механіці.
- •3.13 Приклади розв’язування задач
- •1. Імпульс. Закон збереження імпульсу
- •1. М’ячик масою 200 г вільно падає з висоти 5м на горизонтальну поверхню. Вважаючи удар абсолютно пружним, визначити зміну імпульсу при такому ударі (рис.3.13.1).
- •3. Два тіла рухаються назустріч одне одному з швидкостями . Після абсолютно непружного удару ці тіла стали рухатись разом з швидкістю . Визначити відношення мас цих тіл.
- •4. З самохідної гарматної установки загальною масою 8 т вистрілюють снаряд масою 5 кг зі швидкістю 1200 м∕ с під кутом 600 до горизонту. Визначити швидкість віддачі установки.
- •3.14 Контрольні питання
- •4 Динаміка обертального руху твердого тіла відносно нерухомої осі обертання
- •4.1 Кінетична енергія обертального руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •4.2 Основне рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання
- •4.3 Момент імпульсу. Закон збереження моменту імпульсу
- •4.4 Моменти інерції різних тіл. Теорема Штейнера
- •3. Момент інерції однорідного диска або циліндра
- •4. Момент інерції конуса
- •5. Момент інерції однорідної суцільної кулі
- •6. Момент інерції тонкостінної сфери
- •4.5 Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •4.6 Гіроскопічний ефект. Прецесія гіроскопа
- •4.7 Застосування гіроскопів та гіроскопічних ефектів
- •4.8 Короткий зміст основних питань динаміки обертового руху твердого тіла
- •Кінетична енергія обертового руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •Основне рівняння динаміки обертового руху твердого тіла
- •3. Момент імпульсу. Закон збереження моменту імпульсу
- •4. Моменти інерції різних тіл. Теорема Штейнера
- •5. Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •Гіроскопічний ефект. Прецесія гіроскопа
- •Застосування гіроскопів та гіроскопічних ефектів
- •4.9 Приклади розв’язування задач
- •2. Перевірка основного рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання.
- •5.2 Рівняння Бернуллі
- •5.3 Наслідки з рівняння Бернуллі
- •5.3.1 Швидкість витікання рідини через невеликий отвір
- •5.3.2 Горизонтально розташована трубка течії. Вимірювання швидкості течії
- •5.3.3 Застосування наслідків з рівняння Бернуллі в техніці
- •5.4 Внутрішнє тертя в рідинах і газах (в’язкість)
- •5.5 Течія Пуазейля. Формула Пуазейля
- •5.6 Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •5.7 Елементи реології
- •1. Ньютонівські та неньютонівські системи
- •2 Експериментальні методи вивчення в’язкості
- •2. Ротаційні віскозиметри
- •3 Метод Стокса
- •5.8 Короткий зміст основних питань механіки рідин і газів
- •8. Наслідки з рівняння Бернуллі.
- •2. Горизонтально розташована трубка течії. Вимірювання швидкості течії.
- •3. Застосування наслідків з рівняння Бернуллі в техніці.
- •4. Природні явища, де мають місце наслідки з рівняння Бернуллі.
- •9. Внутрішнє тертя в рідинах і газах (в’язкість).
- •10. Течія Пуазейля. Формула Пуазейля.
- •11. Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •12. Елементи реології.
- •1. Ньютонівські та неньютонівські системи.
- •Експериментальні методи вивчення в’язкості
- •1. Капілярні віскозиметри
- •2. Ротаційні віскозиметри
- •3. Метод Стокса
- •5.9 Приклади розв’язування задач
- •1. Швидкість течії води у широкій частині труби дорівнює 20 см ∕с. Яка швидкість течії у вузькій частині, що має діаметр у 4 рази менший від діаметра широкої частини?
- •2 . З отвору площею поперечного перерізу зі швидкістю у вертикальному напрямі витікає струмина рідин. Якою буде площа поперечного перерізу струмини на висоті ?
- •6 Механічні властивості твердих тіл
- •6.1 Основні види пружних деформацій твердого тіла
- •1. Одностороння деформація розтягу (стиснення).
- •2. Деформація зсуву.
- •3. Деформація кручення.
- •4. Деформація прогину.
- •5. Деформація стиснення (або розтягу).
- •6.2 Твердість тіл
3.10 Застосування законів збереження до співудару двох тіл
Вище окремо було розглянуто фундаментальні закони збереження – закон збереження імпульсу та закон збереження енергії. На основі цих законів можна пояснити багато явищ і кількісно описати ці явища. Застосування цих законів в окремих випадках значно спрощує розв’язок окремих задач, про що Ви переконались на окремих прикладах з кінематики і динаміки.
Одне з важливих застосувань законів збереження – це співудар двох тіл. А саме, відомі маси тіл та їх швидкості до співудару, необхідно знайти швидкості після їх взаємодії.
Розглянемо два випадки: абсолютно не пружній удар та абсолютно пружній.
До взаємодії імпульс тіл, як замкнутої системи дорівнює:
.
(3.10.1)
П
ісля
напруженої взаємодії тіла рухаються,
як єдине ціле масою
та з швидкістю
і імпульс тіл становить:
,
(3.10.2)
тоді, згідно закону збереження імпульсу:
,
(3.10.3)
звідки шукана швидкість дорівнює
.
(3.10.4)
Для практичних розрахунків співвідношення необхідно спроектувати на вибраний напрям. Згідно рис. 3.10.1, в проекціях на вісь ОХ будемо мати:
.
(3.10.5)
При
тіла рухаються в напрямі вибраної осі
ОХ.
Якщо порівняти кінетичні енергії тіл до удару і після удару, то вони не рівні, частина механічної енергії «щезає», перетворюється у внутрішню енергію при недружній деформації. Визначимо цю різницю енергій:
.
(3.10.6)
Т
епер
розглянемо абсолютно пружній удар, при
чому обмежимось центральним ударом
двох однорідних куль. Удар називається
центральним, якщо кулі до удару рухаються
вздовж прямої, яка проходить через їх
центри. Відомі маси тіл
,
та їх швидкості
,
,
до удару. Необхідно визначити швидкості
цих тіл після удару (рис.3.10.2).
При такому пружному співударі виконуються закони збереження енергії та імпульсу
(3.10.7)
.
(3.10.8)
Опускаючи громіздкий сумісний розв’язок системи цих двох рівнянь (пропонується зробити самостійно), запишемо кінцевий результат, який визначає швидкість кожного тіла після цього абсолютно пружного співудару:
,
(3.10.9)
.
(3.10.10)
Р
озглянемо
окремий випадок, коли маси куль однакові.
Тоді при
,
як випливає з (3.10.9) та (3.10.10),
,
,
тобто кулі при співударі обмінюються
швидкостями. Якщо ж друга куля до удару
буде нерухома, то після удару вона почне
рухатись з швидкістю першої. Приклад
такої взаємодії двох кульок однакової
маси наведений на рис.3.10.3. Перша кулька
вдаряється об нерухому кульку і
зупиняється, зате друга кулька починає
рухатись з швидкістю першої кульки.
Якраз такий випадок центрального
пружного удару показаний на рис.3.10.4.
при грі в більярд. Гравець ударяє перший
шар, надаючи йому швидкості
,
після чого цей шар, вдаряючись об другий,
нерухомий шар, зупиниться. Другий шар,
набувши швидкості першого шару, попаде
у лузу. Якщо говорити про гру у більярд,
то центральний удар шарів найбільш
простий елемент гри. Створена ціла
науки гри в більярд і, між іншим, відомий
фізик і математик Каріоліс іменем якого
назване каріолісове прискорення (див.
розділ кінематики) написав книжку «
Математична теорія явищ більярдної
гри».
Розглянутий
абсолютно пружний удар – ідеальний
випадок. При цьому удар поділяється на
дві фази: фазу абсолютно пружної
деформації тіла і фазу повного відновлення
попередньої форми тіла. У більшості
випадків повного відновлення попередньої
форми тіл не наступає, що супроводжується
втратами кінетичної енергії тіл. Тому
для врахування втрат кінетичної енергії
при ударах тіл вводять коефіцієнт
відновлення, який визначають наступним
чином. Так, якщо швидкість першого тіла
до удару
і ця швидкість при абсолютно пружному
ударі входить у всі формули закону
збереження енергії та імпульсу, то при
реальній, не абсолютно пружній деформації,
швидкість зменшиться до
і саме ця зменшена швидкість буде
визначати результат співудару з іншим
тілом. Так само друге тіло не є абсолютно
пружним, що приведе до зменшення швидкості
з
до
.
Відношення модуля різниці реальних
швидкостей двох тіл до модуля різниці
швидкостей цих самих, але тільки
абсолютно пружних тіл і буде коефіцієнтом
відновлення:
.
(3.10.11)
Значення коефіцієнта
відновлення для різних тіл визначається
дослідним шляхом. Наприклад, для дерева
,
для сталі
,
для тенісного м’ячика
,
а для більярдної кульки, виготовленої
з слонової кості
.
Можна довести що з врахуванням коефіцієнта відновлення модулі швидкостей двох тіл після удару, вказаного на рисунку 3.7.2, будуть мати такі значення:
,
(3.10.12)
.
(3.10.13)