
- •6.040103 – «Геологія»
- •1 Кінематика
- •1.1 Кінематика матеріальної точки
- •Система відліку
- •1.1.2 Матеріальна точка. Способи опису руху матеріальної точки
- •1.1.3 Рівномірний рух. Швидкість рівномірного руху
- •1.1.4 Нерівномірний рух. Середня швидкість. Миттєва швидкість
- •1.1.5 Рівнозміний рух. Прискорення. Змінний рух. Миттєве прискорення
- •1.1.6 Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення
- •Абсолютно тверде тіло та число ступенів його свободи
- •1.3 Кінематика обертального руху твердого тіла
- •1.3.1 Обертальний рух твердого тіла відносно нерухомої вісі обертання. Вектор кутового переміщення. Кутова швидкість. Кутове прискорення.
- •1.3.2. Зв'язок між кутовими і лінійними кінематичними величинами обертального руху
- •1.4 Кінематика відносного руху. Переносне прискорення. Прискорення каріоліса
- •1. Чим більша відстань від центра обертання, тим більша лінійна швидкість обертання. Тобто, маємо зміну швидкості, викликану лише переміщенням точок .
- •1.5 Короткий зміст основних питань кінематики
- •4. Способи опису руху матеріальної точки:
- •6. Миттєва швидкість
- •7. Рівнозмінний рух. Прискорення.
- •8. Змінний рух. Середнє прискорення. Миттєве прискорення.
- •9. Прискорення при криволінійному русі. Нормальне і тангенціальне прискорення.
- •10. Поступальний рух тіла.
- •11. Обертальний рух тіла.
- •16. Кутове прискорення.
- •17. Зв'язок між лінійними і кутовими кінематичними величинами обертового руху.
- •3. Одна пряма рухається паралельно сама собі з швидкістю v1, а друга – зі швидкістю v2.. Питання: з якою швидкістю v3 рухається точка перетину цих прямих?
- •2.Задачі на рівно змінний рух
- •1. Автомобіль проходить гальмівний шлях 20 м. Визначити час руху автомобіля до зупинки та модуль прискорення, якщо початкова швидкість 54 км/.
- •3. Град, падаючи з хмари за останню секунду свого падіння пролітає шлях, що становить 0,19 всієї висоти. Визначити час падіння та висоту, з якає падає град. Опором повітря нехтувати.
- •3 Рух тіла, кинутого горизонтально
- •4 Рух тіла, кинутого під кутом до горизонту
- •5.Задачі на середню і миттєву швидкість та миттєве прискорення
- •2. Першу половину часу автомобіль рухався з швидкістю 60 км/год, а другу половину часу з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •3. Першу половину шляху автомобіль рухався з швидкістю 60 км/год, а другу половину шляху з швидкістю 40 км/год. Визначити середню швидкість протягом всього часу.
- •6.Задачі кінематики обертального руху
- •1. Колесо починає обертатись зі стану спокою і, зробивши 100 обертів, досягає кутової швидкості 62,8 рад/с. Вважаючи рух рівноприскореним, визначити час та кутове прискорення даного обертового руху.
- •4. У вибраній системі відліку з декартовими координатами кінематичні рівняння матеріальної точки мають наступний вигляд:
- •5. Задача-тест.
- •1.7 Контрольні питання з кінематики
- •2 Динаміка матеріальної точки (тіла) при поступальному русі. Закони ньютона. Сили в механіці. Гравітація
- •2.1 Динаміка матеріальної точки (тіла) при поступальному русі. Закони Ньютона
- •2.2 Сили в природі. Сили в механіці
- •2.2.1 Сили тертя
- •2.2.2 Сили пружності
- •2.3 Гравітація
- •2.3.1 Закони Кеплера. Закон Всесвітнього тяжіння
- •3. Квадрати періодів обертання планет навколо Сонця відносяться як куби великих піввісей їх орбіт:
- •2.3.2 Експериментальне визначення гравітаційної сталої. Дослід Кавендиша
- •2.3.3 Гравітаційна взаємодія тіл довільної форми
- •4 Гравітаційне поле. Напруженість гравітаційного поля
- •5 Елементи теорії векторного поля. Теорема Остроградського-Гауса
- •6 Гравітаційне поле Землі (поле тіла сферичної форми)
- •7 Аномалії гравітаційного поля Землі. Поняття про гравітаційну
- •2.4 Рух тіл в полі тяжіння. Вага тіла. Невагомість. Штучні супутники
- •2.4.1 Вага тіла
- •2.4.2 Рух тіла у полі тяжіння у вертикальному напрямі. Перевантаження. Невагомість
- •2.4.3 Криволінійний рух тіла у полі тяжіння
- •2.4. 4 Вплив обертання Землі на вагу тіл
- •1 Тіло на полюсі
- •2 Тіло на екваторі
- •3 Тіло на довільній широті
- •5 Штучні супутники Землі
- •2.6 Короткий зміст основних питань динаміки
- •3. Сили в природі. Сили в механіці.
- •4. Сили тертя.
- •5. Сили пружності.
- •6. Закони Кеплера.
- •Планети рухаються по еліпсах, в одному з фокусів яких знаходиться Сонце (рис.2.4.2).
- •7. Закон Всесвітнього тяжіння
- •8. Експериментальне визначення гравітаційної сталої. Дослід Кавендиша.
- •9. Гравітаційна взаємодія тіл довільної форми
- •10. Гравітаційне поле
- •10. Вага тіла
- •1. Потік вектора
- •2.7 Приклади розвязування задач
- •1. Рух тіла в горизонтальному напрямі під дією декількох сил
- •2. Дано:
- •5. Рух тіла під дією змінної сили.
- •6. Рух тіла по похилій площині
- •7. Динаміка руху тіла по колу
- •Випадок руху тіла по колу у вертикальній площині – рух тіла на нитці.
- •10. Який період обертання у горизонтальній площині тіла, підвішеного на нитці довжиною l, якщо нитка утворює з вертикаллю кут α?
- •8. Закон всесвітнього тяжіння. Гравітаційне поле
- •1 Визначити силу притягання між тонким кільцем радіуса r і масою м та матеріальною точкою масою m, яка знаходиться на відстані l від центра кільця.
- •2. Матеріальна точка масою m знаходиться на віддалі a від нескінченно довгої тонкої нитки з лінійною густиною . Визначити силу, з якою притягаються така нитка і тіло точкової маси.
- •2.7 Контрольні питання з динаміки
- •3. Закони збереження в механіці
- •3.1 Закон збереження імпульсу
- •3.2 Центр мас. Теорема про рух центра мас
- •3.3 Реактивний рух
- •3.4 Реактивний рух в природі. Живі ракети
- •3.5 Робота сталої і змінної сил. Потужність
- •3.6 Енергія. Загальний підхід до поняття енергії
- •3.7 Кінетична енергія матеріальної точки (тіла) при поступальному русі
- •3.8 Робота сил тяжіння. Потенціальна енергія тіла в полі тяжіння
- •3.9 Закон збереження енергії в механіці
- •3.10 Застосування законів збереження до співудару двох тіл
- •3.11 Основні напрями альтернативної енергетики
- •1. Вітроенергетика
- •2. Геліоенергетика
- •3. Геотермальна енергетика
- •1. Вітроенергетика
- •2. Альтернативна гідроенергетика
- •3.12 Короткий зміст основних питань законів збереження в механіці
- •1. Закон збереження імпульсу
- •2. Центр мас. Теорема про рух центра мас
- •3. Реактивний рух
- •4. Робота сталої і змінної сил. Потужність
- •5. Енергія. Кінетична і потенціальна енергія
- •6. Закон збереження енергії в механіці.
- •3.13 Приклади розв’язування задач
- •1. Імпульс. Закон збереження імпульсу
- •1. М’ячик масою 200 г вільно падає з висоти 5м на горизонтальну поверхню. Вважаючи удар абсолютно пружним, визначити зміну імпульсу при такому ударі (рис.3.13.1).
- •3. Два тіла рухаються назустріч одне одному з швидкостями . Після абсолютно непружного удару ці тіла стали рухатись разом з швидкістю . Визначити відношення мас цих тіл.
- •4. З самохідної гарматної установки загальною масою 8 т вистрілюють снаряд масою 5 кг зі швидкістю 1200 м∕ с під кутом 600 до горизонту. Визначити швидкість віддачі установки.
- •3.14 Контрольні питання
- •4 Динаміка обертального руху твердого тіла відносно нерухомої осі обертання
- •4.1 Кінетична енергія обертального руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •4.2 Основне рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання
- •4.3 Момент імпульсу. Закон збереження моменту імпульсу
- •4.4 Моменти інерції різних тіл. Теорема Штейнера
- •3. Момент інерції однорідного диска або циліндра
- •4. Момент інерції конуса
- •5. Момент інерції однорідної суцільної кулі
- •6. Момент інерції тонкостінної сфери
- •4.5 Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •4.6 Гіроскопічний ефект. Прецесія гіроскопа
- •4.7 Застосування гіроскопів та гіроскопічних ефектів
- •4.8 Короткий зміст основних питань динаміки обертового руху твердого тіла
- •Кінетична енергія обертового руху твердого тіла відносно нерухомої осі обертання. Момент інерції тіла
- •Основне рівняння динаміки обертового руху твердого тіла
- •3. Момент імпульсу. Закон збереження моменту імпульсу
- •4. Моменти інерції різних тіл. Теорема Штейнера
- •5. Вільні осі обертання тіла. Головні осі інерції тіла. Головні моменти інерції тіла. Поняття про тензор моменту інерції тіла
- •Гіроскопічний ефект. Прецесія гіроскопа
- •Застосування гіроскопів та гіроскопічних ефектів
- •4.9 Приклади розв’язування задач
- •2. Перевірка основного рівняння динаміки обертового руху твердого тіла відносно нерухомої осі обертання.
- •5.2 Рівняння Бернуллі
- •5.3 Наслідки з рівняння Бернуллі
- •5.3.1 Швидкість витікання рідини через невеликий отвір
- •5.3.2 Горизонтально розташована трубка течії. Вимірювання швидкості течії
- •5.3.3 Застосування наслідків з рівняння Бернуллі в техніці
- •5.4 Внутрішнє тертя в рідинах і газах (в’язкість)
- •5.5 Течія Пуазейля. Формула Пуазейля
- •5.6 Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •5.7 Елементи реології
- •1. Ньютонівські та неньютонівські системи
- •2 Експериментальні методи вивчення в’язкості
- •2. Ротаційні віскозиметри
- •3 Метод Стокса
- •5.8 Короткий зміст основних питань механіки рідин і газів
- •8. Наслідки з рівняння Бернуллі.
- •2. Горизонтально розташована трубка течії. Вимірювання швидкості течії.
- •3. Застосування наслідків з рівняння Бернуллі в техніці.
- •4. Природні явища, де мають місце наслідки з рівняння Бернуллі.
- •9. Внутрішнє тертя в рідинах і газах (в’язкість).
- •10. Течія Пуазейля. Формула Пуазейля.
- •11. Ламінарний та турбулентний режим течії. Числа Рейнольда. Рух тіл в рідинах і газах
- •12. Елементи реології.
- •1. Ньютонівські та неньютонівські системи.
- •Експериментальні методи вивчення в’язкості
- •1. Капілярні віскозиметри
- •2. Ротаційні віскозиметри
- •3. Метод Стокса
- •5.9 Приклади розв’язування задач
- •1. Швидкість течії води у широкій частині труби дорівнює 20 см ∕с. Яка швидкість течії у вузькій частині, що має діаметр у 4 рази менший від діаметра широкої частини?
- •2 . З отвору площею поперечного перерізу зі швидкістю у вертикальному напрямі витікає струмина рідин. Якою буде площа поперечного перерізу струмини на висоті ?
- •6 Механічні властивості твердих тіл
- •6.1 Основні види пружних деформацій твердого тіла
- •1. Одностороння деформація розтягу (стиснення).
- •2. Деформація зсуву.
- •3. Деформація кручення.
- •4. Деформація прогину.
- •5. Деформація стиснення (або розтягу).
- •6.2 Твердість тіл
3.4 Реактивний рух в природі. Живі ракети
Р
еактивний
рух властивий деяким представникам
живої природи. Наприклад, кальмарам,
каракатицям, медузам – всі вони
використовують для плавання реакцію
струмини води, що відкидається. Так,
кальмар забирає у себе воду, а потім
виштовхує її через невеликий отвір, як
показано на рис.3.4.1, і, тим самим,
забезпечуючи реактивний рух. Все як у
реактивному двигуні – тільки замість
газів витікає вода зі швидкістю
,
а сам кальмар рухається у протилежному
напрямі з швидкістю
(приблизно 70 км/год).
При цьому всі щупальці кальмара
збираються у вузол, і він набуває обтічної
форми.
Другий разючий приклад реактивного руху в природі – це, так званий, скажений огірок. Природа справді створила живу рослинну ракету. У південних країнах та у нас на узбережжі Чорного моря виростає рослина під назвою "скажений огірок". Цю рослину не дарма так називають. До моменту стиглості в ньому виникає великий тиск (майже 6 атмосфер). Навіть легкий дотик до такого огірка викликає неймовірний ефект – миттєво огірок відривається від стеблини, а з отвору, що утворився, викидається сильна струмина клейкої рідини з насінням. Летить такий огірок, подібно ракеті (рис3.4.2), розкидаючи насіння на відстань майже 12 м.
3.5 Робота сталої і змінної сил. Потужність
Ми настільки звикли до терміну „робота”, що для нас це поняття не вимагає пояснення. Але що ж таке робота? Якщо говорять – у нього важка фізична робота, то мають на увазі, що під дією мускульної сили переміщаються важкі предмети. Наприклад, робітник працює вантажником. Але такий самий результат переміщення тіла можна отримати за рахунок не мускульної, а іншої сили, наприклад, електродвигуна підіймального крана. Таким чином, дія сили, однаковою за величиною, але різною за своєю природою, в першому і другому випадках однакова. Отже, доцільно ввести фізичну величину, яка б характеризувала дію сили при переміщенні, і тому в механіці мірою дії сили при переміщенні тіла є фізична величина, що називається роботою.
Спочатку розглянемо
найпростіший випадок переміщення тіла
під дією сталої сили. Наприклад, на тіло
діє стала сила
,
під дією якої відбувається переміщення,
модуль якого дорівнює
,
як вказано на рис.3.5.1. Очевидно, чим
більша сила і чим більше переміщення,
тим більша дія такої сили, тобто робота.
Отже, робота сили повинна визначатись
добутком сили на переміщення. А якщо
напрям сили не співпадає з переміщенням?
Звичайно, тоді роботу виконує тангенціальна
(дотична)
,
складова сили, що співпадає з переміщенням,
і тоді робота сталої сили визначається
відомим співвідношенням
,
(3.5.1)
де
– кут між напрямом сили і переміщенням.
Зрозуміло, що нормальна (перпендикулярна)
складова
роботи не виконує.
Одиницею роботи в системі СІ є 1 Дж (джоуль), який дорівнює роботі, здійснюваній силою 1Н на шляху 1м.
Скалярний добуток
можна переписати у вигляді добутку
проекції сили
на напрям переміщення
.
(3.5.2)
Якщо робота
виконується змінною силою, то спочатку
визначають елементарну роботу
на такому малому переміщенні,
,
щоб силу вважати сталою і ця елементарна
робота дорівнює
.
(3.5.3)
Тоді вся робота дорівнює інтегральній сумі
.
(3.5.4)
Наприклад, залежність сили від шляху задана деякою функцією, графік якої наведений на рис. 3.5.2.
Як видно з рис.3.5.2, елементарна робота чисельно дорівнює площі смужки з основою і висотою F, а вся робота буде чисельно дорівнювати сумі площ, тобто площі цієї криволінійної фігури.
Як найпростіший
випадок роботи змінної сили можна
розглядати роботу при деформації
пружини, яка виконується силою,
пропорційною зміщенню
.
Тоді робота такої змінної сили дорівнює
.
(3.5.5)
Визначаючи
елементарну роботу
,
ми користуємось математичним знаком
диференціала
.
З математики відомо, що лише неперервна
функція диференційована в кожній точці.
А чи може робота, як неперервна функція,
існувати в „точці”?
Звичайно, ні. Отже, робота не є функція
стану, вираз
не є повним диференціалом неперервної
функції, а вираз
– це є елементарна робота, тобто робота
при нескінченно малому переміщенні
(але
ні в якому випадку в точці).
Одна і та ж робота може бути виконана за різні проміжки часу, тому вводять фізичну величину, яка називається потужністю. Якщо за будь-які, але рівні проміжки часу, виконується однакова робота, то відношення цієї роботи за той час, за який дана робота виконана, називається потужністю.
.
(3.5.6)
Якщо за рівні
проміжки часу
виконується неоднакова робота
,
то відношення
(3.5.7)
дає значення середньої потужності. Миттєва потужність визначається відношенням елементарної роботи за час до цього часу .
.
(3.5.8)
Так як
,
то
.
(3.5.9)
Наприклад,
–
сила тяги двигуна,
– швидкість.
В системі СІ одиницею потужності є Вт (ват), 1Вт = 1 Дж/с. Поряд з цією одиницею потужності інколи (особливо для двигунів) користуються несистемною одиницею потужності – одна кінська сила, 1к.с. = 736 Вт.