Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DQOS Exam Certification Guide - Cisco press.pdf
Скачиваний:
69
Добавлен:
24.05.2014
Размер:
12.7 Mб
Скачать

494 Chapter 7: Link-Efficiency Tools

To enable RTP header compression, the frame-relay ip rtp header-compression command was added to both serial subinterfaces on R1 and R3. (If a multipoint subinterface had been used instead, the same parameters could have been configured on a frame-relay map command.)

The show frame-relay ip rtp header-compression command lists statistics about how well cRTP is working. You might recall that cRTP reduces the 40 bytes of IP, UDP, and RTP header to between 2 and 4 bytes, saving between 36 and 38 bytes per packet. In the output in the example, with 16,992 packets compressed, a savings of 645,645 bytes is realized, which is an average per-packet savings of 37.99 bytes.

The show frame-relay ip rtp header-compression command output also lists an efficiency improvement factor, which is the compression ratio. It is calculated as the number of bytes that would have been sent without compression, divided by the actual number of bytes sent. From the shaded lines at the end of the preceding example, 645,645 + 373,875 bytes would have been sent (the number of bytes saved, plus actual number sent), for a total of 1,019,520 bytes that would have been sent. Dividing that total by the actual number sent (373,875) gives you the improvement factor of 2.72. For perspective, if you divide the packet size of a G.729 VoIP packet (60 bytes), by the compressed size of 22 bytes (which implies you saved 38 of the

40 bytes in the header), the ratio also calculates to 2.72. Therefore, the empirical ratio from the show command matches the theoretical ratio between bytes that would have been sent, and bytes that are actually sent, with cRTP.

Link Fragmentation and Interleaving

Both types of QoS tools covered in this chapter address bandwidth constraints to some degree. Compression tools directly attack bandwidth constraints by lowering the bandwidth required to forward packets. Link fragmentation and interleaving (LFI) tools directly lower delay by defeating a side effect of a small transmit clock speed, namely serialization delay.

A quick review of serialization delay should help you make more sense out of LFI tools. Serialization is the time required to send a frame over a physical link. If a link has a physical clock rate of x bps, it takes 1/x seconds to send a single bit. If a frame has y bits in it, it takes y/x seconds to serialize the frame. The faster the link, the lower the serialization delay. On a 56kbps link, for example, it takes 1/56,000 of a second to send 1 bit. A 1500-byte frame (12,000 bits) takes 12,000/56,000 seconds to serialize, or roughly 214 ms.

When a router starts to send a frame out of an interface, it sends the complete frame. If a small, delay-sensitive frame needs to exit an interface, and the router has just begun to send a large frame, the small frame must wait until the whole large frame has been sent before the router will send the small, delay–sensitive frame. As seen in the preceding example, a 1500-byte frame takes 214 ms to serialize at 56 kbps, which is far too long for the small frame to wait if it is part of a VoIP stream.

Link Fragmentation and Interleaving 495

LFI tools attack the serialization delay problem by ensuring that large packets do not delay smaller packets. It accomplishes this by dividing larger packets (fragmentation) and interleaving later-arriving smaller packets with the fragments from the larger packet. The smaller, delaysensitive interleaved packets, typically VoIP, are defined in your QoS policy. Figure 7-5 outlines the basic process.

Figure 7-5 Basic Concept Behind LFI Tools

Interface Output Queue, no LFI

Delay

Sensitive

60 Byte 1500 Byte Packet

Packet

 

 

 

Interface Output Queue, with LFI, 300 Byte Fragments

 

300 Byte

 

300 Byte

 

300 Byte

 

300 Byte

 

Delay

 

300 Byte

 

Fragment

 

Fragment

 

Fragment

 

Fragment

 

Sensitive

 

Fragment

 

#5 of

 

#4 of

 

#3 of

 

#2 of

 

60 Byte

 

#1 of

 

Original

 

Original

 

Original

 

Original

 

Packet

 

Original

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the upper queue in the figure, without LFI, the small 60-byte packet must wait for the full 1500-byte packet to be forwarded. In the lower queue, with LFI enabled, IOS can choose to let the smaller packet exit the interface ahead of some of the fragments of the larger packet.

Before examining LFI in more detail, you need to take a closer look at the terms “packet” and “frame.” In most cases in this book, these terms have been used interchangeably. However, it is important to realize what really gets placed into the queues, and what really gets fragmented, when discussing LFI tools.

First, we need a shared definition of what each of the two terms mean. Packet refers to the entity that flows through the network, including the Layer 3 header, all headers from layers above Layer 3, and the end-user data. Packets do not include the data-link (Layer 2) headers and trailers. Frames include the packet, as well as the data-link (Layer 2) header and trailer.

Queuing tools actually place frames into the queues. For instance, Weighted Fair Queuing (WFQ) on a PPP serial interface places PPP frames into the queues. Concerning queuing tools, the distinction does not really have much bearing on the choices you make. In addition, because most people tend to use the term “packet” more often, this book just uses packet when it does not matter whether you care about the packet or the frame.

496 Chapter 7: Link-Efficiency Tools

LFI tools require you to think about what happens to the packet, and what happens to the frame. Consider Figure 7-6, which shows some of the details of an unfragmented frame, and a fragmented frame, using Frame Relay.

Figure 7-6 LFI Application to Packets and Frames, 1500-Byte Packet

Unfragmented

 

1509 Byte Frame

 

 

 

 

FR Header

 

1500 byte packet

FR Trailer

(6 bytes)

 

 

(3 bytes)

 

 

 

 

FR Header

500 byte

FR Trailer

(8 bytes)

packet

(3 bytes)

 

 

 

FR Header

500 byte

FR Trailer

(8 bytes)

packet

(3 bytes)

 

 

 

FR Header

500 byte

FR Trailer

(8 bytes)

packet

(3 bytes)

 

 

 

Fragmented

511 Byte Frame

 

 

 

Fragmented

511 Byte Frame

Fragment Size 511

In the upper part of the figure, a 1500-byte packet has an extra 9 bytes of Frame Relay header and trailer added to it, to form a 1509-byte frame. In the lower part of the figure, the 1500-byte packet has been fragmented into three 500-byte fragments, and then placed into Frame Relay frames. It turns out that with FRF.12 LFI, an additional 2 bytes of header are needed to manage the fragments, so each of the three frames totals 511 bytes in length.

Technically, the fragment size used in the figure is 511 bytes, not 500. Most people would tend to think something like “the router fragmented the 1500-byte packet into three 500-byte fragments.” In reality, the router performs logic like in the following list:

The router fragments the packet into smaller pieces.

The router adds the appropriate data-link headers and trailers, including any headers specifically needed for fragmentation support.

The length of the resulting frames (including data-link headers/trailers) does not exceed the fragmentation size configured.

The router adds these frames to the appropriate queue.

So, the router fragments packets into smaller pieces, but the size of the pieces is determined by the fragment size, which is based on the frame size. Therefore, does LFI really fragment packets, or frames? Frankly, either term works. When you are choosing the size of the fragments, however, always remember that the fragment size determines the size of the frames, not the packets. Therefore, you should consider the length of the data-link headers and trailers when choosing the size of the fragments.