- •QoS Overview
- •“Do I Know This Already?” Quiz
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss Questions
- •Foundation Topics
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •Bandwidth
- •The clock rate Command Versus the bandwidth Command
- •QoS Tools That Affect Bandwidth
- •Delay
- •Serialization Delay
- •Propagation Delay
- •Queuing Delay
- •Forwarding Delay
- •Shaping Delay
- •Network Delay
- •Delay Summary
- •QoS Tools That Affect Delay
- •Jitter
- •QoS Tools That Affect Jitter
- •Loss
- •QoS Tools That Affect Loss
- •Summary: QoS Characteristics: Bandwidth, Delay, Jitter, and Loss
- •Voice Basics
- •Voice Bandwidth Considerations
- •Voice Delay Considerations
- •Voice Jitter Considerations
- •Voice Loss Considerations
- •Video Basics
- •Video Bandwidth Considerations
- •Video Delay Considerations
- •Video Jitter Considerations
- •Video Loss Considerations
- •Comparing Voice and Video: Summary
- •IP Data Basics
- •Data Bandwidth Considerations
- •Data Delay Considerations
- •Data Jitter Considerations
- •Data Loss Considerations
- •Comparing Voice, Video, and Data: Summary
- •Foundation Summary
- •QoS Tools and Architectures
- •“Do I Know This Already?” Quiz
- •QoS Tools Questions
- •Differentiated Services Questions
- •Integrated Services Questions
- •Foundation Topics
- •Introduction to IOS QoS Tools
- •Queuing
- •Queuing Tools
- •Shaping and Policing
- •Shaping and Policing Tools
- •Congestion Avoidance
- •Congestion-Avoidance Tools
- •Call Admission Control and RSVP
- •CAC Tools
- •Management Tools
- •Summary
- •The Good-Old Common Sense QoS Model
- •GOCS Flow-Based QoS
- •GOCS Class-Based QoS
- •The Differentiated Services QoS Model
- •DiffServ Per-Hop Behaviors
- •The Class Selector PHB and DSCP Values
- •The Assured Forwarding PHB and DSCP Values
- •The Expedited Forwarding PHB and DSCP Values
- •The Integrated Services QoS Model
- •Foundation Summary
- •“Do I Know This Already?” Quiz Questions
- •CAR, PBR, and CB Marking Questions
- •Foundation Topics
- •Marking
- •IP Header QoS Fields: Precedence and DSCP
- •LAN Class of Service (CoS)
- •Other Marking Fields
- •Summary of Marking Fields
- •Class-Based Marking (CB Marking)
- •Network-Based Application Recognition (NBAR)
- •CB Marking show Commands
- •CB Marking Summary
- •Committed Access Rate (CAR)
- •CAR Marking Summary
- •Policy-Based Routing (PBR)
- •PBR Marking Summary
- •VoIP Dial Peer
- •VoIP Dial-Peer Summary
- •Foundation Summary
- •Congestion Management
- •“Do I Know This Already?” Quiz
- •Queuing Concepts Questions
- •WFQ and IP RTP Priority Questions
- •CBWFQ and LLQ Questions
- •Comparing Queuing Options Questions
- •Foundation Topics
- •Queuing Concepts
- •Output Queues, TX Rings, and TX Queues
- •Queuing on Interfaces Versus Subinterfaces and Virtual Circuits (VCs)
- •Summary of Queuing Concepts
- •Queuing Tools
- •FIFO Queuing
- •Priority Queuing
- •Custom Queuing
- •Weighted Fair Queuing (WFQ)
- •WFQ Scheduler: The Net Effect
- •WFQ Scheduling: The Process
- •WFQ Drop Policy, Number of Queues, and Queue Lengths
- •WFQ Summary
- •Class-Based WFQ (CBWFQ)
- •CBWFQ Summary
- •Low Latency Queuing (LLQ)
- •LLQ with More Than One Priority Queue
- •IP RTP Priority
- •Summary of Queuing Tool Features
- •Foundation Summary
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •“Do I Know This Already?” Quiz
- •Shaping and Policing Concepts Questions
- •Policing with CAR and CB Policer Questions
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Foundation Topics
- •When and Where to Use Shaping and Policing
- •How Shaping Works
- •Where to Shape: Interfaces, Subinterfaces, and VCs
- •How Policing Works
- •CAR Internals
- •CB Policing Internals
- •Policing, but Not Discarding
- •Foundation Summary
- •Shaping and Policing Concepts
- •“Do I Know This Already?” Quiz
- •Congestion-Avoidance Concepts and RED Questions
- •WRED Questions
- •FRED Questions
- •Foundation Topics
- •TCP and UDP Reactions to Packet Loss
- •Tail Drop, Global Synchronization, and TCP Starvation
- •Random Early Detection (RED)
- •Weighted RED (WRED)
- •How WRED Weights Packets
- •WRED and Queuing
- •WRED Summary
- •Flow-Based WRED (FRED)
- •Foundation Summary
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •“Do I Know This Already?” Quiz
- •Compression Questions
- •Link Fragmentation and Interleave Questions
- •Foundation Topics
- •Payload and Header Compression
- •Payload Compression
- •Header Compression
- •Link Fragmentation and Interleaving
- •Multilink PPP LFI
- •Maximum Serialization Delay and Optimum Fragment Sizes
- •Frame Relay LFI Using FRF.12
- •Choosing Fragment Sizes for Frame Relay
- •Fragmentation with More Than One VC on a Single Access Link
- •FRF.11-C and FRF.12 Comparison
- •Foundation Summary
- •Compression Tools
- •LFI Tools
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •Call Admission Control Overview
- •Call Rerouting Alternatives
- •Bandwidth Engineering
- •CAC Mechanisms
- •CAC Mechanism Evaluation Criteria
- •Local Voice CAC
- •Physical DS0 Limitation
- •Max-Connections
- •Voice over Frame Relay—Voice Bandwidth
- •Trunk Conditioning
- •Local Voice Busyout
- •Measurement-Based Voice CAC
- •Service Assurance Agents
- •SAA Probes Versus Pings
- •SAA Service
- •Calculated Planning Impairment Factor
- •Advanced Voice Busyout
- •PSTN Fallback
- •SAA Probes Used for PSTN Fallback
- •IP Destination Caching
- •SAA Probe Format
- •PSTN Fallback Scalability
- •PSTN Fallback Summary
- •Resource-Based CAC
- •Resource Availability Indication
- •Gateway Calculation of Resources
- •RAI in Service Provider Networks
- •RAI in Enterprise Networks
- •RAI Operation
- •RAI Platform Support
- •Cisco CallManager Resource-Based CAC
- •Location-Based CAC Operation
- •Locations and Regions
- •Calculation of Resources
- •Automatic Alternate Routing
- •Location-Based CAC Summary
- •Gatekeeper Zone Bandwidth
- •Gatekeeper Zone Bandwidth Operation
- •Single-Zone Topology
- •Multizone Topology
- •Zone-per-Gateway Design
- •Gatekeeper in CallManager Networks
- •Zone Bandwidth Calculation
- •Gatekeeper Zone Bandwidth Summary
- •Integrated Services / Resource Reservation Protocol
- •RSVP Levels of Service
- •RSVP Operation
- •RSVP/H.323 Synchronization
- •Bandwidth per Codec
- •Subnet Bandwidth Management
- •Monitoring and Troubleshooting RSVP
- •RSVP CAC Summary
- •Foundation Summary
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •“Do I Know This Already?” Quiz
- •QoS Management Tools Questions
- •QoS Design Questions
- •Foundation Topics
- •QoS Management Tools
- •QoS Device Manager
- •QoS Policy Manager
- •Service Assurance Agent
- •Internetwork Performance Monitor
- •Service Management Solution
- •QoS Management Tool Summary
- •QoS Design for the Cisco QoS Exams
- •Four-Step QoS Design Process
- •Step 1: Determine Customer Priorities/QoS Policy
- •Step 2: Characterize the Network
- •Step 3: Implement the Policy
- •Step 4: Monitor the Network
- •QoS Design Guidelines for Voice and Video
- •Voice and Video: Bandwidth, Delay, Jitter, and Loss Requirements
- •Voice and Video QoS Design Recommendations
- •Foundation Summary
- •QoS Management
- •QoS Design
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •The Need for QoS on the LAN
- •Layer 2 Queues
- •Drop Thresholds
- •Trust Boundries
- •Cisco Catalyst Switch QoS Features
- •Catalyst 6500 QoS Features
- •Supervisor and Switching Engine
- •Policy Feature Card
- •Ethernet Interfaces
- •QoS Flow on the Catalyst 6500
- •Ingress Queue Scheduling
- •Layer 2 Switching Engine QoS Frame Flow
- •Layer 3 Switching Engine QoS Packet Flow
- •Egress Queue Scheduling
- •Catalyst 6500 QoS Summary
- •Cisco Catalyst 4500/4000 QoS Features
- •Supervisor Engine I and II
- •Supervisor Engine III and IV
- •Cisco Catalyst 3550 QoS Features
- •Cisco Catalyst 3524 QoS Features
- •CoS-to-Egress Queue Mapping for the Catalyst OS Switch
- •Layer-2-to-Layer 3 Mapping
- •Connecting a Catalyst OS Switch to WAN Segments
- •Displaying QoS Settings for the Catalyst OS Switch
- •Enabling QoS for the Catalyst IOS Switch
- •Enabling Priority Queuing for the Catalyst IOS Switch
- •CoS-to-Egress Queue Mapping for the Catalyst IOS Switch
- •Layer 2-to-Layer 3 Mapping
- •Connecting a Catalyst IOS Switch to Distribution Switches or WAN Segments
- •Displaying QoS Settings for the Catalyst IOS Switch
- •Foundation Summary
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •QoS Tools
- •Differentiated Services
- •Integrated Services
- •CAR, PBR, and CB Marking
- •Queuing Concepts
- •WFQ and IP RTP Priority
- •CBWFQ and LLQ
- •Comparing Queuing Options
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •Shaping and Policing Concepts
- •Policing with CAR and CB Policer
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Shaping and Policing Concepts
- •Congestion-Avoidance Concepts and RED
- •WRED
- •FRED
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •Compression
- •Link Fragmentation and Interleave
- •Compression Tools
- •LFI Tools
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •QoS Management Tools
- •QoS Design
- •QoS Management
- •QoS Design
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •Foundation Topics
- •QPPB Route Marking: Step 1
- •QPPB Per-Packet Marking: Step 2
- •QPPB: The Hidden Details
- •QPPB Summary
- •Flow-Based dWFQ
- •ToS-Based dWFQ
- •Distributed QoS Group–Based WFQ
- •Summary: dWFQ Options
606 Chapter 8: Call Admission Control and QoS Signaling
Table 8-18 Gatekeeper Zone Bandwidth CAC Evaluation Criteria
Evaluation Criteria |
Value |
|
|
VoX supported |
VoIP/H.323 only |
|
|
Toll bypass or IP telephony |
Toll bypass and IP telephony |
|
(Some caveats exist if both the CallManager and Cisco IOS gateways |
|
are used in the same zone.) |
|
|
Platforms and releases |
Cisco IOS gateways since Release 11.3 |
|
(CM has recent changes in E.164 registration, and bandwidth |
|
requested per call.) |
|
|
PBX trunk types supported |
All |
|
|
End to end, local, or IP cloud |
End-to-end between originating gateway and terminating gateway, |
|
although not aware of the network topology in between |
|
|
Per call, interface, or endpoint |
Per call |
|
|
Topology awareness |
None |
|
|
Guarantees QoS for duration |
None |
of call |
|
|
|
Postdial delay |
None |
|
|
Messaging network overhead |
Part of the gatekeeper RAS messaging |
|
|
Integrated Services / Resource Reservation Protocol
In Chapter 2, “QoS Tools and Architectures,” this book introduced the concepts of differentiated services (DiffServ) and integrated services (IntServ). Most of the rest of the chapters in this book cover QoS features that either use DiffServ, or behave similarly. This section covers some of the key concepts and configuration related to IntServ.
The IntServ model, defined in RFC 1633, includes provisions for best-effort traffic, real-time traffic, and controlled-link sharing. Controlled-link sharing is a management facility that enables administrators to divide traffic into classes and assign a minimum percentage of the link to each desired class during times of congestion, while sharing this assigned bandwidth with other classes when congestion is not present.
In the IntServ model, an application requests a specific level of service from the network before sending data. An application informs the network of its traffic profile by sending an explicit signaling message, requesting a particular level of service based on bandwidth and delay requirements. The application is expected to send data only after it gets a confirmation from the network. The network performs admission control, based on information from the application and available network resources. The network also commits to meeting the QoS requirements of the application as long as the traffic remains within the profile specifications. After a confirmation from the network has been received, the application can send data that conforms to the
Resource-Based CAC 607
described traffic profile. The network fulfills its commitment by maintaining per-flow state and then performing packet classification, policing, and intelligent queuing based on that state.
The Resource Reservation Protocol (RSVP) defines the messages used to signal resource admission control and resource reservations conforming to IntServ. When the application signals the required level of service, if resources are available, the network devices accept the RSVP reservation.
To provide the committed service levels, the networking devices must identify packets that are part of the reserved flows, and provide appropriate queuing treatment. When committing service to a new flow, Cisco IOS installs a traffic classifier in the packet-forwarding path, allowing the network devices to identify packets for which a reservation has been made. To provide the required service level, Cisco IOS uses existing QoS tools.
Most networks that use RSVP and IntServ also use DiffServ features as well. For instance, the same queuing tool that provides minimum bandwidth commitments for DiffServ can also be used to dynamically reserve bandwidth for IntServ and RSVP. As noted in Chapter 2, DiffServ does scale much better than IntServ. Cisco has a relatively new feature called RSVP aggregation, which integrates resource-based admission control with DiffServ, which allows for better scalability, but with strict QoS guarantees for prioritized traffic, such as VoIP calls.
RSVP Levels of Service
To request a level of service from the network, the acceptable levels of service must be defined. Currently RSVP defines three distinct levels of service:
•
•
•
Guaranteed QoS
Controlled-load network element service
Best-effort levels of service
The guaranteed QoS level of service is used to guarantee that the required bandwidth can be provided to a flow with a fixed delay. This service makes it possible to provide a service that guarantees both delay and bandwidth. This type of RSVP service is used by voice gateways when reserving bandwidth for voice flows.
The controlled-load level of service tightly approximates the behavior visible to applications receiving best-effort service under uncongested conditions from the same series of network elements. So, if the application can work well when the network is uncongested, the controlled load level of RSVP service can work well. If the network is functioning correctly with controlled-load service, applications may assume the following:
•Very low loss—If the network is not congested, queues will not fill, so no drops occur in queues. The only packet loss occurs due to transmission errors.
•Very low delay and jitter—If the network is not congested, queues will not fill, and queuing delay is the largest variable component of both delay and jitter.
608 Chapter 8: Call Admission Control and QoS Signaling
The best-effort level of service does not grant priority to the flow. The flow receives the same treatment as any other flow within the router.
RSVP Operation
RSVP uses path and resv messages to establish a reservation for a requested data flow. A path message carries the traffic description for the desired flow from the sending application to the receiving application, and the resv message carries the reservation request for the flow from the receiving application to the sending application. Figure 8-29 shows a network that consists of several routers carrying the path and resv messages for a sending and receiving application.
Figure 8-29 RSVP Path and Resv Messages
|
|
|
PATH Messages |
|
|
|
|
R2 |
|
R3 |
|
|
|
|
|
|
|
|
|
|
RESV Messages |
||
R1 |
|
|
R4 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Data Flow |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sending |
|
Receiving |
||||||||||||||
Application |
|
Application |
In this example, the sending application responds to an application request by sending a path message to the RSVP router R1 describing the level of service required to support the requested application. R1 forwards the path message to router R2, R2 forwards the message to router R3, R3 forwards the message to R4, and finally R4 forwards the message to the receiving application. If the level of service described in the path message can be met, the receiving application sends a resv message to RSVP router R4. The resv message causes each router in the data path to the sending application to place a reservation with the requested level of service for the flow. When the resv message reaches the sending application, the data flow begins.
Resource-Based CAC 609
Path messages describe the level of service required for a particular flow through the use of the Sender_Tspec object within the message. The Sender_TSpec object is defined by the sending application and remains in tact as the path message moves through the network to the receiving application. Also included in the path message is the ADSpec object. The ADSpec object is modified by each intermediary router as the RSVP path message travels from the sending application to the receiving application. The ADSpec object carries traffic information generated by the intermediary routers. The traffic information describes the properties of the data path, such as the availability of the specified level of service. If a level of service described in the ADSpec object is not implemented in the router, a flag is set to alert the receiving application.
Effectively, the Sender_Tspec states what the application needs, and the ADSpec allows each successive router to comment on the level of service it can and cannot support. The receiving application can look at both settings and decide whether to accept or reject the reservation request. Figure 8-30 shows the Sending_TSpec and ADSpec objects sent in a path message from a sending application.
Figure 8-30 Path Messages Sending_TSpec and ADSpec Objects
Sender_Tspec
Level of Service =
Guaranteed or
Controlled-Load
R1
Sender_Tspec
Level of Service =
Guaranteed or
Controlled-Load
Sending
Application
Sender_Tspec
Level of Service =
Guaranteed or
Controlled-Load
R2 |
|
R3 |
||
|
R2 ADSpec |
|
|
|
|
Level of Service = |
|
|
|
|
Guaranteed |
R3 ADSpec |
||
R1 ADSpec |
Level of Service = |
|||
Controlled-Load |
||||
Level of Service = |
||||
Flag Set |
||||
Guaranteed |
||||
|
|
|||
|
|
R4 ADSpec |
||
Application |
Level of Service = |
|||
Guaranteed |
||||
ADSpec |
||||
|
|
|||
Level of Service = |
|
|
||
Guaranteed |
|
|
Application ADSpec Level of Service = Guaranteed R1 ADSpec Level of Service = Guaranteed R2 ADSpec Level of Service = Guaranteed
R3 ADSpec Level of Service = Controlled-Load
R4 ADSpec Level of Service = Guaranteed
Sender_Tspec
Level of Service =
Guaranteed or
Controlled-Load
R4
Sender_Tspec
Level of Service =
Guaranteed or
Controlled-Load
Receiving
Application
610 Chapter 8: Call Admission Control and QoS Signaling
In Figure 8-30 the Sending_TSpec is advertising the required level of service for this application as guaranteed. Because intermediary routers do not modify the Sending_TSpec, this value is passed through the network to the receiving application. The ADSpec lists the level of service available at each intermediate router along the data path. As the path message reaches router R3, the ADSpec object is modified to indicate that router R3 can only provide a controlled-load level of service. Essentially, the sending application has asked for guaranteed RSVP service, and the ADSpec implies that at least one router can only support a controlled-load service for this request.
The receiver of the path message replies with an resv message. Resv messages request a reservation for a specific flow through the use of a FlowSpec object. The FlowSpec object provides a description of the desired flow and indicates the desired level of service for the flow to the intermediary routers, based on the information received from the path message in the ADSpec object. A single level of service must be used for all nodes in the network—in other words, it can be controlled-load or guaranteed service, but not both. Because the sending application requires either guaranteed or controlled-load level of service to begin the flow, and router R3 can only provide controlled-load level of service, the receiving application can only request a reservation specifying controlled-load level of service. Example 8-31 shows the FlowSpec object sent in a resv message from a receiving application.
Figure 8-31 Resv Messages FlowSpec Objects
|
|
|
|
|
|
|
|
|
|
FlowSpec |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Requested Service = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Controlled-Load |
|
|
|
FlowSpec |
|||||
FlowSpec |
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
Requested Service = |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
Requested Service = |
|
|
R2 |
R3 |
|
|
Controlled Load |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
Controlled Load |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
R1 |
|
|
|
|
|
|
|
R4 |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FlowSpec |
FlowSpec |
|
|
|
|
|
|
|
|
|
|
|
|
|
Requested Service = |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Requested Service = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Controlled Load |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Controlled Load |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
Data Flow |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sending |
Receiving |
Application |
Application |