
- •QoS Overview
- •“Do I Know This Already?” Quiz
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss Questions
- •Foundation Topics
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •Bandwidth
- •The clock rate Command Versus the bandwidth Command
- •QoS Tools That Affect Bandwidth
- •Delay
- •Serialization Delay
- •Propagation Delay
- •Queuing Delay
- •Forwarding Delay
- •Shaping Delay
- •Network Delay
- •Delay Summary
- •QoS Tools That Affect Delay
- •Jitter
- •QoS Tools That Affect Jitter
- •Loss
- •QoS Tools That Affect Loss
- •Summary: QoS Characteristics: Bandwidth, Delay, Jitter, and Loss
- •Voice Basics
- •Voice Bandwidth Considerations
- •Voice Delay Considerations
- •Voice Jitter Considerations
- •Voice Loss Considerations
- •Video Basics
- •Video Bandwidth Considerations
- •Video Delay Considerations
- •Video Jitter Considerations
- •Video Loss Considerations
- •Comparing Voice and Video: Summary
- •IP Data Basics
- •Data Bandwidth Considerations
- •Data Delay Considerations
- •Data Jitter Considerations
- •Data Loss Considerations
- •Comparing Voice, Video, and Data: Summary
- •Foundation Summary
- •QoS Tools and Architectures
- •“Do I Know This Already?” Quiz
- •QoS Tools Questions
- •Differentiated Services Questions
- •Integrated Services Questions
- •Foundation Topics
- •Introduction to IOS QoS Tools
- •Queuing
- •Queuing Tools
- •Shaping and Policing
- •Shaping and Policing Tools
- •Congestion Avoidance
- •Congestion-Avoidance Tools
- •Call Admission Control and RSVP
- •CAC Tools
- •Management Tools
- •Summary
- •The Good-Old Common Sense QoS Model
- •GOCS Flow-Based QoS
- •GOCS Class-Based QoS
- •The Differentiated Services QoS Model
- •DiffServ Per-Hop Behaviors
- •The Class Selector PHB and DSCP Values
- •The Assured Forwarding PHB and DSCP Values
- •The Expedited Forwarding PHB and DSCP Values
- •The Integrated Services QoS Model
- •Foundation Summary
- •“Do I Know This Already?” Quiz Questions
- •CAR, PBR, and CB Marking Questions
- •Foundation Topics
- •Marking
- •IP Header QoS Fields: Precedence and DSCP
- •LAN Class of Service (CoS)
- •Other Marking Fields
- •Summary of Marking Fields
- •Class-Based Marking (CB Marking)
- •Network-Based Application Recognition (NBAR)
- •CB Marking show Commands
- •CB Marking Summary
- •Committed Access Rate (CAR)
- •CAR Marking Summary
- •Policy-Based Routing (PBR)
- •PBR Marking Summary
- •VoIP Dial Peer
- •VoIP Dial-Peer Summary
- •Foundation Summary
- •Congestion Management
- •“Do I Know This Already?” Quiz
- •Queuing Concepts Questions
- •WFQ and IP RTP Priority Questions
- •CBWFQ and LLQ Questions
- •Comparing Queuing Options Questions
- •Foundation Topics
- •Queuing Concepts
- •Output Queues, TX Rings, and TX Queues
- •Queuing on Interfaces Versus Subinterfaces and Virtual Circuits (VCs)
- •Summary of Queuing Concepts
- •Queuing Tools
- •FIFO Queuing
- •Priority Queuing
- •Custom Queuing
- •Weighted Fair Queuing (WFQ)
- •WFQ Scheduler: The Net Effect
- •WFQ Scheduling: The Process
- •WFQ Drop Policy, Number of Queues, and Queue Lengths
- •WFQ Summary
- •Class-Based WFQ (CBWFQ)
- •CBWFQ Summary
- •Low Latency Queuing (LLQ)
- •LLQ with More Than One Priority Queue
- •IP RTP Priority
- •Summary of Queuing Tool Features
- •Foundation Summary
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •“Do I Know This Already?” Quiz
- •Shaping and Policing Concepts Questions
- •Policing with CAR and CB Policer Questions
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Foundation Topics
- •When and Where to Use Shaping and Policing
- •How Shaping Works
- •Where to Shape: Interfaces, Subinterfaces, and VCs
- •How Policing Works
- •CAR Internals
- •CB Policing Internals
- •Policing, but Not Discarding
- •Foundation Summary
- •Shaping and Policing Concepts
- •“Do I Know This Already?” Quiz
- •Congestion-Avoidance Concepts and RED Questions
- •WRED Questions
- •FRED Questions
- •Foundation Topics
- •TCP and UDP Reactions to Packet Loss
- •Tail Drop, Global Synchronization, and TCP Starvation
- •Random Early Detection (RED)
- •Weighted RED (WRED)
- •How WRED Weights Packets
- •WRED and Queuing
- •WRED Summary
- •Flow-Based WRED (FRED)
- •Foundation Summary
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •“Do I Know This Already?” Quiz
- •Compression Questions
- •Link Fragmentation and Interleave Questions
- •Foundation Topics
- •Payload and Header Compression
- •Payload Compression
- •Header Compression
- •Link Fragmentation and Interleaving
- •Multilink PPP LFI
- •Maximum Serialization Delay and Optimum Fragment Sizes
- •Frame Relay LFI Using FRF.12
- •Choosing Fragment Sizes for Frame Relay
- •Fragmentation with More Than One VC on a Single Access Link
- •FRF.11-C and FRF.12 Comparison
- •Foundation Summary
- •Compression Tools
- •LFI Tools
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •Call Admission Control Overview
- •Call Rerouting Alternatives
- •Bandwidth Engineering
- •CAC Mechanisms
- •CAC Mechanism Evaluation Criteria
- •Local Voice CAC
- •Physical DS0 Limitation
- •Max-Connections
- •Voice over Frame Relay—Voice Bandwidth
- •Trunk Conditioning
- •Local Voice Busyout
- •Measurement-Based Voice CAC
- •Service Assurance Agents
- •SAA Probes Versus Pings
- •SAA Service
- •Calculated Planning Impairment Factor
- •Advanced Voice Busyout
- •PSTN Fallback
- •SAA Probes Used for PSTN Fallback
- •IP Destination Caching
- •SAA Probe Format
- •PSTN Fallback Scalability
- •PSTN Fallback Summary
- •Resource-Based CAC
- •Resource Availability Indication
- •Gateway Calculation of Resources
- •RAI in Service Provider Networks
- •RAI in Enterprise Networks
- •RAI Operation
- •RAI Platform Support
- •Cisco CallManager Resource-Based CAC
- •Location-Based CAC Operation
- •Locations and Regions
- •Calculation of Resources
- •Automatic Alternate Routing
- •Location-Based CAC Summary
- •Gatekeeper Zone Bandwidth
- •Gatekeeper Zone Bandwidth Operation
- •Single-Zone Topology
- •Multizone Topology
- •Zone-per-Gateway Design
- •Gatekeeper in CallManager Networks
- •Zone Bandwidth Calculation
- •Gatekeeper Zone Bandwidth Summary
- •Integrated Services / Resource Reservation Protocol
- •RSVP Levels of Service
- •RSVP Operation
- •RSVP/H.323 Synchronization
- •Bandwidth per Codec
- •Subnet Bandwidth Management
- •Monitoring and Troubleshooting RSVP
- •RSVP CAC Summary
- •Foundation Summary
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •“Do I Know This Already?” Quiz
- •QoS Management Tools Questions
- •QoS Design Questions
- •Foundation Topics
- •QoS Management Tools
- •QoS Device Manager
- •QoS Policy Manager
- •Service Assurance Agent
- •Internetwork Performance Monitor
- •Service Management Solution
- •QoS Management Tool Summary
- •QoS Design for the Cisco QoS Exams
- •Four-Step QoS Design Process
- •Step 1: Determine Customer Priorities/QoS Policy
- •Step 2: Characterize the Network
- •Step 3: Implement the Policy
- •Step 4: Monitor the Network
- •QoS Design Guidelines for Voice and Video
- •Voice and Video: Bandwidth, Delay, Jitter, and Loss Requirements
- •Voice and Video QoS Design Recommendations
- •Foundation Summary
- •QoS Management
- •QoS Design
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •The Need for QoS on the LAN
- •Layer 2 Queues
- •Drop Thresholds
- •Trust Boundries
- •Cisco Catalyst Switch QoS Features
- •Catalyst 6500 QoS Features
- •Supervisor and Switching Engine
- •Policy Feature Card
- •Ethernet Interfaces
- •QoS Flow on the Catalyst 6500
- •Ingress Queue Scheduling
- •Layer 2 Switching Engine QoS Frame Flow
- •Layer 3 Switching Engine QoS Packet Flow
- •Egress Queue Scheduling
- •Catalyst 6500 QoS Summary
- •Cisco Catalyst 4500/4000 QoS Features
- •Supervisor Engine I and II
- •Supervisor Engine III and IV
- •Cisco Catalyst 3550 QoS Features
- •Cisco Catalyst 3524 QoS Features
- •CoS-to-Egress Queue Mapping for the Catalyst OS Switch
- •Layer-2-to-Layer 3 Mapping
- •Connecting a Catalyst OS Switch to WAN Segments
- •Displaying QoS Settings for the Catalyst OS Switch
- •Enabling QoS for the Catalyst IOS Switch
- •Enabling Priority Queuing for the Catalyst IOS Switch
- •CoS-to-Egress Queue Mapping for the Catalyst IOS Switch
- •Layer 2-to-Layer 3 Mapping
- •Connecting a Catalyst IOS Switch to Distribution Switches or WAN Segments
- •Displaying QoS Settings for the Catalyst IOS Switch
- •Foundation Summary
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •QoS Tools
- •Differentiated Services
- •Integrated Services
- •CAR, PBR, and CB Marking
- •Queuing Concepts
- •WFQ and IP RTP Priority
- •CBWFQ and LLQ
- •Comparing Queuing Options
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •Shaping and Policing Concepts
- •Policing with CAR and CB Policer
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Shaping and Policing Concepts
- •Congestion-Avoidance Concepts and RED
- •WRED
- •FRED
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •Compression
- •Link Fragmentation and Interleave
- •Compression Tools
- •LFI Tools
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •QoS Management Tools
- •QoS Design
- •QoS Management
- •QoS Design
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •Foundation Topics
- •QPPB Route Marking: Step 1
- •QPPB Per-Packet Marking: Step 2
- •QPPB: The Hidden Details
- •QPPB Summary
- •Flow-Based dWFQ
- •ToS-Based dWFQ
- •Distributed QoS Group–Based WFQ
- •Summary: dWFQ Options

796 Appendix A: Answers to the “Do I Know This Already?” Quizzes and Q&A Sections
12Which of the traffic-shaping tools can be enabled on each VC on a Frame Relay multipoint subinterface?
FRTS.
Q&A
Shaping and Policing Concepts
1Explain the points during the process of a single router receiving and forwarding traffic at which shaping and policing can be enabled on a router.
Shaping can be enabled for packets exiting an interface, subinterface, or individual VC. Policing can be performed both on packets entering an interface or exiting an interface.
2Compare and contrast the actions that shaping and policing take when a packet exceeds a traffic contract.
Shaping queues packets when the shaping rate is exceeded. Policing either discards the packet, just transmits the packet, or it re-marks a QoS field before transmitting the packet.
3Compare and contrast the effects that shaping and policing have on bandwidth, delay, jitter, and loss.
Shaping places packets into queues when the actual traffic rate exceeds the traffic contract, which causes more delay, and more jitter. Policing when making a simple decision to either discard or forward each packet causes more packet loss, but less delay and jitter for the packets that do make it through the network.
4Describe the typical locations to enable shaping and policing in an internetwork.
Shaping is typically performed before sending packets into a network that is under some other administrative control. For instance, shaping is typically performed before sending packets from an enterprise into a service provider’s Frame Relay network. Policing, although supported as both an input and output function, is typically performed at ingress points, once again at the edge between two administrative domains.

Chapter 5 797
5Describe the reasons behind egress blocking in a Frame Relay network with a T1 access link at the main site, 128-kbps access links at each of 20 remote sites, with 64-kbps CIR VCs from the main site to each remote site.
Egress blocking can occur for frames leaving the Frame Relay network going to the main site, because the sum of the access rates of the 20 sites exceeds the access rate at the main site. Egress blocking occurs for packets leaving the Frame Relay network going to an individual remote site, because the access rate at the main site exceeds the access rate at each remote site.
6If a router has a shaping tool configured, with a shaping rate of 256 kbps, and a Bc of 16,000 bits, what Tc value does the shaping tool use?
Because Tc = Bc/CIR, the answer is 16,000/256,000, or 62.5 ms.
If a router has a shaping tool configured, with a shaping rate of 512 kbps, and a Be of 16,000 bits, what Tc value does the shaping tool use?
Tc is not calculated based on Be, so you cannot know the answer with this limited amount of information. The formula to calculate Tc is as follows: Tc = Bc/CIR, where CIR is the shaping rate. If you know Bc and CIR, you can calculate the Tc value.
7Define the terms Tc, Bc, Be, and CIR.
Tc: Time interval, measured in milliseconds, over which the committed burst (Bc) can be sent.
Bc: committed burst size, measured in bits. This is the amount of traffic that can be sent during every interval Tc. Typically also defined in the traffic contract.
Be: Excess burst size, in bits. This is the number of bits beyond Bc that can be sent in the first Tc after a period of inactivity.
CIR: committed information rate, in bits per second, defines the amount of bandwidth that the provider has agree to provide as defined in the traffic contract.
8Explain the goal of the Da and Dc debt processes when using CAR.
CAR attempts to reduce congestion by getting the senders of the traffic to slow down, similar to WRED.
9Describe the concept of traffic-shaping adaption, explaining the two triggers that cause shaping to adapt.
Adaption causes the shaper to reduce the shaping rate during congestion. Shaping can react to frames with the BECN bit set, or to Cisco Foresight congestion messages.

798 Appendix A: Answers to the “Do I Know This Already?” Quizzes and Q&A Sections
10Describe the difference between interface output queues and shaping queues, and explain where the queues could exist on a router with 1 physical interface and 20 subinterfaces.
Output queues exist on the physical interface, and can be controlled with queuing tools such as CBWFQ, CAR, and WFQ. Shaping queues exist when traffic shaping is enabled; the shaping queue is associated with the particular instance of shaping. If shaping has been enabled on 20 subinterfaces on a single physical interface, for instance, 20 sets of shaping queues exist, all feeding into the single set of physical interface output queues.
Traffic Shaping
11What do the following intialisms stand for? FRTS, GTS, DTS, and CB shaping
Frame Relay traffic shaping, generic traffic shaping, distributed traffic shaping, and class-based shaping.
12List the command, with the correct syntax, that sets a shaped rate of 128 kbps, a Bc of 8000, and a Be of 8000, when using GTS. Do not assume any defaults; explicitly set the values in the command.
traffic-shape rate 128000 8000 8000
13Along with the class-map, policy-map, and service-policy commands, CB shaping requires one specific command that actually sets values used for the shaping function. List the command, with the correct syntax, that sets a shaped rate of 128 kbps, a Bc of 8000, and a Be of 8000, when using CB shaping. Do not assume any defaults; explicitly set the values in the command.
shape 128000 8000 8000
14Along with the class-map, policy-map, and service-policy commands, DTS requires one specific command that actually sets values used for the shaping function. List the command, with the correct syntax, that sets a shaped rate of 128 kbps, a Bc of 8000, and a Be of 8000, when using DTS. Do not assume any defaults; explicitly set the values in the command.
shape 128000 8000 8000
15Many commands are needed to configure FRTS, but the actual shaping parameters, such as CIR and Bc, are set under the map-class frame-relay command. List the map-class subcommands, with the correct syntax, that sets a shaped rate of 128 kbps, a Bc of 8000, and a Be of 8000, when using FRTS, and using multiple commands. Do not assume any defaults; explicitly set the values in the commands.
frame-relay bc 8000 frame-relay be 8000 frame-relay cir 128000

Chapter 5 799
16Compare and contrast the use of the class-map and map-class commands in terms of how each is used by FRTS and CB shaping.
FRTS uses map-class to create a common set of shaping parameters, which are then applied to an interface, subinterface, or VC. FRTS does not use the class-map command for shaping. Likewise, CB shaping does not use the map-class command. It does, however, use the class-map command for defining classification options. Interestingly, FRTS can use the class-map command indirectly, when using CBWFQ or LLQ. (Example 5-9 shows a sample configuration.)
17Describe the context inside the configuration mode under which the service-policy command can be used to enable LLQ on an FRTS shaping queue. (“Context” means what part of configuration mode—for instance, global-configuration mode, interface configuration mode, and so on.)
You can use the service-policy command inside map-class configuration mode.
18Explain the context inside the configuration mode under which the service-policy command can be used to enable LLQ on a CB shaping queue. (“Context” means what part of configuration mode—for instance, global-configuration mode, interface configuration mode, and so on.)
CB shaping requires a policy map, with class commands inside the policy map. Inside class configuration mode inside the CB shaping policy map, the service-policy command can refer to another policy map, which could enable LLQ for the class.
19Explain the context inside the configuration mode under which the service-policy command can be used to enable LLQ on a GTS shaping queue. (“Context” means what part of configuration mode—for instance, global-configuration mode, interface configuration mode, and so on.)
GTS does not support LLQ as one of its shaping queues.
20GTS has been configured under subinterface s0/0.1. What show command lists statistics for GTS behavior just for that subinterface?
show traffic-shape statistics interface s0/0.1
21DTS has been configured under subinterface s0/0.1. What show command lists statistics for DTS behavior just for that subinterface?
show policy-map interface s0/0.1
22CB shaping has been configured under subinterface s0/0.1. What show command lists statistics for CB shaping behavior just for that subinterface?
show policy-map interface s0/0.1

800 Appendix A: Answers to the “Do I Know This Already?” Quizzes and Q&A Sections
23FRTS has been configured under subinterface s0/0.1. What show command lists statistics for FRTS behavior just for that subinterface?
show traffic-shape statistics interface s0/0.1
24Which of the traffic-shaping tools can be enabled on PPP interfaces?
GTS, DTS, and CB shaping.
25Which of the traffic-shaping tools can be enabled on each VC on a Frame Relay multipoint subinterface?
FRTS.
26Which of the traffic-shaping tools support adaptive shaping?
FRTS, GTS, DTS, and CB shaping.
27For which of the traffic-shaping tools does IOS perform shaping processing on 7500 VIP cards?
DTS.
28Which of the traffic-shaping tools can classify traffic to shape subsets of the traffic on a subinterface?
GTS, DTS, and CB shaping.
29Which shaping tools do not support WFQ and PQ to be used for the shaping queues?
GTS, CB shaping, DTS.
30Which shaping tools do not allow WFQ or LLQ to be used for the interface output queuing at the same time as the shaping tool is enabled on the same interface?
FRTS.
Traffic-Policing Tools
31Explain the use of the continue keyword as part of CAR policing actions, and the feature CAR provides through the keyword.
CAR allows nested, or cascaded, rate-limit commands. A single packet can match the classification logic of a rate-limit command, but if the action includes the continue keyword, the packet is compared to any additional rate-limit commands, until another one is matched. CAR supports the ability to police a superset of the traffic, and then police a subset of the traffic at a different rate, using the continue keyword.
32CAR has been configured under subinterface s0/0.1. What show command lists statistics for CAR behavior just for that subinterface?
show interfaces s 0/0.1 rate-limit