
- •QoS Overview
- •“Do I Know This Already?” Quiz
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss Questions
- •Foundation Topics
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •Bandwidth
- •The clock rate Command Versus the bandwidth Command
- •QoS Tools That Affect Bandwidth
- •Delay
- •Serialization Delay
- •Propagation Delay
- •Queuing Delay
- •Forwarding Delay
- •Shaping Delay
- •Network Delay
- •Delay Summary
- •QoS Tools That Affect Delay
- •Jitter
- •QoS Tools That Affect Jitter
- •Loss
- •QoS Tools That Affect Loss
- •Summary: QoS Characteristics: Bandwidth, Delay, Jitter, and Loss
- •Voice Basics
- •Voice Bandwidth Considerations
- •Voice Delay Considerations
- •Voice Jitter Considerations
- •Voice Loss Considerations
- •Video Basics
- •Video Bandwidth Considerations
- •Video Delay Considerations
- •Video Jitter Considerations
- •Video Loss Considerations
- •Comparing Voice and Video: Summary
- •IP Data Basics
- •Data Bandwidth Considerations
- •Data Delay Considerations
- •Data Jitter Considerations
- •Data Loss Considerations
- •Comparing Voice, Video, and Data: Summary
- •Foundation Summary
- •QoS Tools and Architectures
- •“Do I Know This Already?” Quiz
- •QoS Tools Questions
- •Differentiated Services Questions
- •Integrated Services Questions
- •Foundation Topics
- •Introduction to IOS QoS Tools
- •Queuing
- •Queuing Tools
- •Shaping and Policing
- •Shaping and Policing Tools
- •Congestion Avoidance
- •Congestion-Avoidance Tools
- •Call Admission Control and RSVP
- •CAC Tools
- •Management Tools
- •Summary
- •The Good-Old Common Sense QoS Model
- •GOCS Flow-Based QoS
- •GOCS Class-Based QoS
- •The Differentiated Services QoS Model
- •DiffServ Per-Hop Behaviors
- •The Class Selector PHB and DSCP Values
- •The Assured Forwarding PHB and DSCP Values
- •The Expedited Forwarding PHB and DSCP Values
- •The Integrated Services QoS Model
- •Foundation Summary
- •“Do I Know This Already?” Quiz Questions
- •CAR, PBR, and CB Marking Questions
- •Foundation Topics
- •Marking
- •IP Header QoS Fields: Precedence and DSCP
- •LAN Class of Service (CoS)
- •Other Marking Fields
- •Summary of Marking Fields
- •Class-Based Marking (CB Marking)
- •Network-Based Application Recognition (NBAR)
- •CB Marking show Commands
- •CB Marking Summary
- •Committed Access Rate (CAR)
- •CAR Marking Summary
- •Policy-Based Routing (PBR)
- •PBR Marking Summary
- •VoIP Dial Peer
- •VoIP Dial-Peer Summary
- •Foundation Summary
- •Congestion Management
- •“Do I Know This Already?” Quiz
- •Queuing Concepts Questions
- •WFQ and IP RTP Priority Questions
- •CBWFQ and LLQ Questions
- •Comparing Queuing Options Questions
- •Foundation Topics
- •Queuing Concepts
- •Output Queues, TX Rings, and TX Queues
- •Queuing on Interfaces Versus Subinterfaces and Virtual Circuits (VCs)
- •Summary of Queuing Concepts
- •Queuing Tools
- •FIFO Queuing
- •Priority Queuing
- •Custom Queuing
- •Weighted Fair Queuing (WFQ)
- •WFQ Scheduler: The Net Effect
- •WFQ Scheduling: The Process
- •WFQ Drop Policy, Number of Queues, and Queue Lengths
- •WFQ Summary
- •Class-Based WFQ (CBWFQ)
- •CBWFQ Summary
- •Low Latency Queuing (LLQ)
- •LLQ with More Than One Priority Queue
- •IP RTP Priority
- •Summary of Queuing Tool Features
- •Foundation Summary
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •“Do I Know This Already?” Quiz
- •Shaping and Policing Concepts Questions
- •Policing with CAR and CB Policer Questions
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Foundation Topics
- •When and Where to Use Shaping and Policing
- •How Shaping Works
- •Where to Shape: Interfaces, Subinterfaces, and VCs
- •How Policing Works
- •CAR Internals
- •CB Policing Internals
- •Policing, but Not Discarding
- •Foundation Summary
- •Shaping and Policing Concepts
- •“Do I Know This Already?” Quiz
- •Congestion-Avoidance Concepts and RED Questions
- •WRED Questions
- •FRED Questions
- •Foundation Topics
- •TCP and UDP Reactions to Packet Loss
- •Tail Drop, Global Synchronization, and TCP Starvation
- •Random Early Detection (RED)
- •Weighted RED (WRED)
- •How WRED Weights Packets
- •WRED and Queuing
- •WRED Summary
- •Flow-Based WRED (FRED)
- •Foundation Summary
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •“Do I Know This Already?” Quiz
- •Compression Questions
- •Link Fragmentation and Interleave Questions
- •Foundation Topics
- •Payload and Header Compression
- •Payload Compression
- •Header Compression
- •Link Fragmentation and Interleaving
- •Multilink PPP LFI
- •Maximum Serialization Delay and Optimum Fragment Sizes
- •Frame Relay LFI Using FRF.12
- •Choosing Fragment Sizes for Frame Relay
- •Fragmentation with More Than One VC on a Single Access Link
- •FRF.11-C and FRF.12 Comparison
- •Foundation Summary
- •Compression Tools
- •LFI Tools
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •Call Admission Control Overview
- •Call Rerouting Alternatives
- •Bandwidth Engineering
- •CAC Mechanisms
- •CAC Mechanism Evaluation Criteria
- •Local Voice CAC
- •Physical DS0 Limitation
- •Max-Connections
- •Voice over Frame Relay—Voice Bandwidth
- •Trunk Conditioning
- •Local Voice Busyout
- •Measurement-Based Voice CAC
- •Service Assurance Agents
- •SAA Probes Versus Pings
- •SAA Service
- •Calculated Planning Impairment Factor
- •Advanced Voice Busyout
- •PSTN Fallback
- •SAA Probes Used for PSTN Fallback
- •IP Destination Caching
- •SAA Probe Format
- •PSTN Fallback Scalability
- •PSTN Fallback Summary
- •Resource-Based CAC
- •Resource Availability Indication
- •Gateway Calculation of Resources
- •RAI in Service Provider Networks
- •RAI in Enterprise Networks
- •RAI Operation
- •RAI Platform Support
- •Cisco CallManager Resource-Based CAC
- •Location-Based CAC Operation
- •Locations and Regions
- •Calculation of Resources
- •Automatic Alternate Routing
- •Location-Based CAC Summary
- •Gatekeeper Zone Bandwidth
- •Gatekeeper Zone Bandwidth Operation
- •Single-Zone Topology
- •Multizone Topology
- •Zone-per-Gateway Design
- •Gatekeeper in CallManager Networks
- •Zone Bandwidth Calculation
- •Gatekeeper Zone Bandwidth Summary
- •Integrated Services / Resource Reservation Protocol
- •RSVP Levels of Service
- •RSVP Operation
- •RSVP/H.323 Synchronization
- •Bandwidth per Codec
- •Subnet Bandwidth Management
- •Monitoring and Troubleshooting RSVP
- •RSVP CAC Summary
- •Foundation Summary
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •“Do I Know This Already?” Quiz
- •QoS Management Tools Questions
- •QoS Design Questions
- •Foundation Topics
- •QoS Management Tools
- •QoS Device Manager
- •QoS Policy Manager
- •Service Assurance Agent
- •Internetwork Performance Monitor
- •Service Management Solution
- •QoS Management Tool Summary
- •QoS Design for the Cisco QoS Exams
- •Four-Step QoS Design Process
- •Step 1: Determine Customer Priorities/QoS Policy
- •Step 2: Characterize the Network
- •Step 3: Implement the Policy
- •Step 4: Monitor the Network
- •QoS Design Guidelines for Voice and Video
- •Voice and Video: Bandwidth, Delay, Jitter, and Loss Requirements
- •Voice and Video QoS Design Recommendations
- •Foundation Summary
- •QoS Management
- •QoS Design
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •The Need for QoS on the LAN
- •Layer 2 Queues
- •Drop Thresholds
- •Trust Boundries
- •Cisco Catalyst Switch QoS Features
- •Catalyst 6500 QoS Features
- •Supervisor and Switching Engine
- •Policy Feature Card
- •Ethernet Interfaces
- •QoS Flow on the Catalyst 6500
- •Ingress Queue Scheduling
- •Layer 2 Switching Engine QoS Frame Flow
- •Layer 3 Switching Engine QoS Packet Flow
- •Egress Queue Scheduling
- •Catalyst 6500 QoS Summary
- •Cisco Catalyst 4500/4000 QoS Features
- •Supervisor Engine I and II
- •Supervisor Engine III and IV
- •Cisco Catalyst 3550 QoS Features
- •Cisco Catalyst 3524 QoS Features
- •CoS-to-Egress Queue Mapping for the Catalyst OS Switch
- •Layer-2-to-Layer 3 Mapping
- •Connecting a Catalyst OS Switch to WAN Segments
- •Displaying QoS Settings for the Catalyst OS Switch
- •Enabling QoS for the Catalyst IOS Switch
- •Enabling Priority Queuing for the Catalyst IOS Switch
- •CoS-to-Egress Queue Mapping for the Catalyst IOS Switch
- •Layer 2-to-Layer 3 Mapping
- •Connecting a Catalyst IOS Switch to Distribution Switches or WAN Segments
- •Displaying QoS Settings for the Catalyst IOS Switch
- •Foundation Summary
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •QoS Tools
- •Differentiated Services
- •Integrated Services
- •CAR, PBR, and CB Marking
- •Queuing Concepts
- •WFQ and IP RTP Priority
- •CBWFQ and LLQ
- •Comparing Queuing Options
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •Shaping and Policing Concepts
- •Policing with CAR and CB Policer
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Shaping and Policing Concepts
- •Congestion-Avoidance Concepts and RED
- •WRED
- •FRED
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •Compression
- •Link Fragmentation and Interleave
- •Compression Tools
- •LFI Tools
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •QoS Management Tools
- •QoS Design
- •QoS Management
- •QoS Design
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •Foundation Topics
- •QPPB Route Marking: Step 1
- •QPPB Per-Packet Marking: Step 2
- •QPPB: The Hidden Details
- •QPPB Summary
- •Flow-Based dWFQ
- •ToS-Based dWFQ
- •Distributed QoS Group–Based WFQ
- •Summary: dWFQ Options

QoS Configurations on Catalyst Switches 743
Example 10-44 Set the DSCP Value for the Classes (Continued)
CatIOS (config-pmap-c)#set ip dscp 46
CatIOS (config-pmap)#class GOLD-DATA
CatIOS (config-pmap-c)#set ip dscp 18
In this example, all traffic matching the GOLD-DATA access list is marked with a DSCP value of 18, all traffic matching the VOICE-CONTROL access list is marked with a DSCP value of 26, and all traffic matching the VOICE access list is marked with a DSCP value of 46.
Finally, the service-policy command is used to assign the policy map to the input traffic on a specific interface. In Example 10-45, the policy map configuration is applied to interface Gigabit Ethernet 0/2.
Example 10-45 Applying the Policy to the Interface
CatIOS (config)#int gigabitethernet 0/2
CatIOS (config-if)#service-policy input CAT-IOS-IN
Connecting a Catalyst IOS Switch to Distribution Switches or WAN Segments
In Figure 10-12, a WAN router is connected to port 5. Typically you will trust the Layer 3 markings from a WAN device. Assuming that the switch is a 6500 or a 3500, to configure the switch to trust the DSCP values received on port 5, you must place the mls qos trust dscp command on interface 5. If the switch is a 4500, the qos trust dscp command is configured on interface 5.
Displaying QoS Settings for the Catalyst IOS Switch
Several show commands enable you to verify the QoS configuration of the Catalyst OS switch. The show mls qos interface queueing command enables you to display the QoS queuing strategy for the Catalyst 3550 switch. In Example 10-46, egress expedited queuing (priority queuing) has been enabled on interface gigabit 0/1, causing Queue 4 to become the priority queue. All frames with a CoS value of 5, 6, or 7 are placed in this queue.
Example 10-46 The show mls qos interface queueing Command
3550 #show mls qos interface queueing
GigabitEthernet0/1
Ingress expedite queue: dis Egress expedite queue: ena wrr bandwidth weights: qid-weights
1 - 25
2 - 25
continues

744 Chapter 10: LAN QoS
Example 10-46 The show mls qos interface queueing Command
3 - 25
4 - 25 when expedite queue is disabled Dscp-threshold map:
d1 : d2 0 1 2 3 4 5 6 7 8 9
---------------------------------------
0 : 01 01 01 01 01 01 01 01 01 01 1 : 01 01 01 01 01 01 01 01 01 01 2 : 01 01 01 01 01 01 01 01 01 01 3 : 01 01 01 01 01 01 01 01 01 01 4 : 01 01 01 01 01 01 01 01 01 01 5 : 01 01 01 01 01 01 01 01 01 01 6 : 01 01 01 01
Cos-queue map: cos-qid
0 - 1
1 - 1
2 - 2
3 - 2
4 - 3
5 - 4
6 - 4
7 – 4
Note that at the end of the command output, the CoS values’ mapping to the four queues is listed. CoS 5 maps to Queue 4, the priority queue, automatically as a result of the configuration to use priority queuing.
The show mls qos interface command enables you to display QoS information for a specified interface. In Example 10-47, the QoS configuration of Fast Ethernet port 0/1 on a Catalyst 3550 switch displays. In the earlier example, interface Fast Ethernet 0/1 was configured to trust the DSCP values received.
Example 10-47 The show mls qos interface Command F0/1
3550 t#show mls qos interface fastethernet0/1
FastEthernet0/1
trust state: trust dscp
COS override: dis default COS: 0
DSCP Mutation Map: Default DSCP Mutation Map

QoS Configurations on Catalyst Switches 745
In Example 10-48, the QoS configuration of Fast Ethernet 0/10 on the Catalyst 3550 switch displays. In the earlier example, interface Fast Ethernet 0/10 was configured to trust the CoS values received.
Example 10-48 The show mls qos interface Command F0/10
3550 t#show mls qos int g0/10
GigabitEthernet0/10
trust state: trust cos
COS override: dis default COS: 0
DSCP Mutation Map: Default DSCP Mutation Map
The show qos interface command enables you to display the current QoS configuration information about the specified interface in a Catalyst 4500. In Example 10-49, QoS has been enabled globally in the switch as well as on this port; however, the trust state for port 4/5 is configured for untrusted. Although QoS has been enabled, this port transmits packets without regard to the CoS or DSCP values on the packets.
Example 10-49 The show qos interface Command: Untrusted
4500 #show qos interface fastethernet 4/5 |
|
|
||
|
|
|
|
|
QoS is enabled globally |
|
|
|
|
Port QoS is enabled |
|
|
|
|
Port Trust State: 'untrusted' |
|
|
|
|
Default DSCP: 0 Default CoS: 0 |
|
|
|
|
Tx-Queue |
Bandwidth |
ShapeRate |
Priority |
QueueSize |
(bps) |
(bps) |
|
(packets) |
|
1 |
N/A |
disabled |
N/A |
240 |
2 |
N/A |
disabled |
N/A |
240 |
3 |
N/A |
disabled |
high |
240 |
4 |
N/A |
disabled |
N/A |
24 |
|
|
|
|
|
In Example 10-50, port 3/1 on a Catalyst 4500 has been configured to trust the DSCP values of packets. Any packet that matches the DSCP classification for admittance into the priority queue is transmitted immediately.
Example 10-50 The show qos interface Command: Trust DSCP
4500 #show qos interface fastethernet 3/1 |
|
|
||
QoS is enabled globally |
|
|
|
|
Port QoS is enabled |
|
|
|
|
Port Trust State: 'dscp' |
|
|
|
|
Default DSCP: 0 Default CoS: 0 |
|
|
|
|
Tx-Queue |
Bandwidth |
ShapeRate |
Priority |
QueueSize |
(bps) |
(bps) |
|
(packets) |
|
continues

746 Chapter 10: LAN QoS
Example 10-50 The show qos interface Command: Trust DSCP (Continued)
1 |
250000000 |
disabled |
N/A |
1920 |
2 |
250000000 |
disabled |
N/A |
1920 |
3 |
250000000 |
disabled |
high |
1920 |
4 |
250000000 |
disabled |
N/A |
1920 |
|
|
|
|
|
In Example 10-51, port 3/2 on a Catalyst 4500 has been configured to trust the CoS values of frames. Any frame that matches the CoS classification for admittance into the priority queue is transmitted immediately.
Example 10-51 The show qos interface Command: Trust CoS
4500 #show qos interface fastethernet 3/2
QoS is enabled globally
Port QoS is enabled
Port Trust State: 'cos'
Default DSCP: 0 Default CoS: 0
Tx-Queue Bandwidth ShapeRate Priority QueueSize
(bps) |
(bps) (packets) |
|
||
1250000000 disabled |
N/A |
1920 |
||
2 250000000 |
disabled |
N/A |
1920 |
|
3 250000000 |
disabled |
high |
1920 |
|
4 250000000 |
disabled |
N/A |
1920 |
The show mls qos map cos command on the Catalyst 6500 and 3550 enables you to display the current CoS-to-DSCP mapping in use by the switch. The show qos map cos command on the Catalyst 4500 displays the same results. In Example 10-52, CoS values of 3, 4, and 5 have been mapped to the DSCP values of 26, 34, and 46, respectively.
Example 10-52 The show qos map cos Command
CatIOS # |
show mls qos map cos |
|
|
|
|
|
|
|||
CoS-DSCP |
Mapping |
Table |
|
|
|
|
|
|
||
CoS: |
0 |
1 |
2 |
|
|
|
|
6 |
7 |
|
3 |
4 |
5 |
||||||||
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------
DSCP: |
0 |
8 |
16 |
26 |
34 |
46 |
48 |
56 |