Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DQOS Exam Certification Guide - Cisco press.pdf
Скачиваний:
69
Добавлен:
24.05.2014
Размер:
12.7 Mб
Скачать

Foundation Summary 301

Foundation Summary

The “Foundation Summary” is a collection of tables and figures that provide a convenient review of many key concepts in this chapter. For those of you already comfortable with the topics in this chapter, this summary could help you recall a few details. For those of you who just read this chapter, this review should help solidify some key facts. For any of you doing your final preparation before the exam, these tables and figures are a convenient way to review the day before the exam.

Table 4-18 outlines the key features of queuing tools, with a brief definition of each feature.

Table 4-18 Key Concepts When Comparing Queuing Tools

 

 

QoS

 

 

Characteristic

Feature

Definition

Affected

 

 

 

Classification

The capability to examine packets to determine into

None

 

which queue the packet should be placed. Many

 

 

options are available.

 

 

 

 

Drop policy

When the queue has been determined, the drop policy

Loss

 

defines the rules by which the router chooses to drop

 

 

the packet. Tail drop, modified tail drop, WRED

 

 

(Weighted Random Early Detect), and FRED (Flow-

 

 

Based Random Early Detect) are the main options.

 

 

 

 

Scheduling inside a

Inside a single queue, packets can be reordered. In

Bandwidth, delay,

single queue

most cases, however, FIFO logic is used for packets

jitter, and loss

 

inside each queue.

 

 

 

 

Scheduling between

The logic that defines how queuing chooses the next

Bandwidth, delay,

different queues

packet to take from the output queues and place it in

jitter, and loss

 

the TX Queue (Transmit Queue).

 

 

 

 

Maximum number of

The maximum number of different queues the queu-

None

queues

ing tools support, which in turn implies the maximum

 

 

number of traffic classifications that can be treated

 

 

differently by the queuing method.

 

 

 

 

Maximum queue

The maximum number of packets in a single queue.

Loss, delay

length

 

 

 

 

 

Figure 4-23 depicts the TX Queue, along with a single FIFO Queuing output queue.

302 Chapter 4: Congestion Management

Figure 4-23 Single FIFO Output Queue, with a Single TX Queue

R1 — Serial 0

4 Packets

 

 

TX Queue, Length 4, Not Controlled

 

 

by Queuing Tool

Arriving

Output Queue: Not Needed in This Case

 

 

 

 

 

Packet 4

Packet 3

Packet 2

Packet 1

 

when TX

 

 

 

 

 

 

Queue Is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Empty

 

 

 

 

 

 

 

R1 — Serial 0

Packets Arriving

 

 

 

 

 

 

 

TX Queue, Length 4, Not Controlled

 

Output Queue: Controlled by Queuing Tool

by Queuing Tool

 

when TX Queue Is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full, and Some

 

 

 

 

Packet 7

Packet 6

Packet 5

 

 

Packet 4

Packet 3

Packet 2

Packet 1

 

 

 

 

 

Packets in Software

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Queue

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24 shows how TX Queues affect queuing. With queuing configured with two queues, seven packets arrive, numbered in the order in which they arrive. The output queuing configuration specifies that the first two packets (1 and 2) should be placed into Queue 2, and the next four packets (numbered 3 through 6) should be placed into Queue 1.

Foundation Summary 303

Figure 4-24 Two Output Queues, with Scheduler Always Servicing Queue 1 Rather Than Queue 2 When Packets Are in Queue 1

Assumed Behavior if

No TX Queue

R1 — Serial 0

Output Queue 1 — Preferred Queue

6 Packets:

 

Packet 6

Packet 5

Packet 4

Packet 3

 

 

Scheduler Would Take

First 2 to

 

 

 

 

 

 

 

 

 

 

Packets 3-6 from Queue 1

Queue 2,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before Packets 1-2 from

Next 4 to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Queue 2

Queue 1

 

 

 

Packet 2

Packet 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Queue 2

Actual Behavior with TX Queue

 

 

 

R1 — Serial0

 

 

 

 

 

 

 

6 Packets:

Output Queue 1

 

 

 

 

 

 

 

First 2 to

Packet 6

Packet 5

Packet 4

Packet 3

 

 

 

TX Queue, Length 2

 

 

 

 

 

 

 

Queue 2,

 

 

 

 

 

 

 

 

 

 

Packet 2

Packet 1

 

 

 

 

 

 

 

 

 

 

 

Next 4 to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Queue 1

 

 

 

 

 

 

 

Packets Exit in Order

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

They Arrived

 

 

 

 

 

 

Output Queue 2

 

The following list summarizes the key points about TX Rings and TX Queues in relation to their effect on queuing:

The TX Queue/TX Ring always performs FIFO scheduling, and cannot be changed.

The TX Queue/TX Ring uses a single queue, per interface.

304Chapter 4: Congestion Management

IOS shortens the interface TX Queue/TX Ring automatically when an output queuing method is configured

You can configure the TX Ring/TX Queue length to a different value.

To delay the traffic, traffic shaping places the packets into the queue associated with the subinterface or DLCI and drains the traffic from the shaping queue at the shaped rate. Figure 4-25 shows the structure of the queues on a subinterface, interface, and the TX Queue, when shaping is enabled.

Figure 4-25 Shaping Queues, Interface Queues, and TX Ring

Router1

s0/0.1

 

 

 

 

 

 

 

 

 

Subinterface

#1

 

 

 

 

 

 

 

 

Shaping Queue

 

 

 

 

 

 

 

 

Interface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Queue

 

 

TX Ring

 

 

 

 

 

 

 

 

s0/0

Subinterface

#2

 

 

 

 

 

 

 

 

Shaping Queue

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s0/0.2

 

 

 

 

 

 

 

 

 

Table 4-19 summarizes some of the key features of PQ.

Table 4-19 PQ Functions and Features

PQ Feature

Explanation

 

 

Classification

Classifies based on matching an ACL for all Layer 3 protocols, incoming

 

interface, packet size, whether the packet is a fragment, and TCP and

 

UDP port numbers.

 

 

Drop policy

Tail drop.

 

 

Maximum number of

4.

queues

 

 

 

Maximum queue length

Infinite; really means that packets will not be tail dropped, but will be

 

queued.

 

 

 

 

Foundation Summary 305

 

 

 

Table 4-19 PQ Functions and Features (Continued)

 

 

 

 

PQ Feature

Explanation

 

 

 

 

Scheduling inside a single

FIFO.

 

queue

 

 

 

 

 

Scheduling among all

Always service higher-priority queues first; result is great service for the

 

queues

High queue, with potential for 100% of link bandwidth. Service

 

 

degrades quickly for lower-priority queues.

 

 

 

Table 4-20 summarizes some of the key features of CQ.

Table 4-20 CQ Functions and Features

CQ Feature

Explanation

 

 

Classification

Classifies based on matching an ACL for all Layer 3 protocols, incoming

 

interface, packet size, whether the packet is a fragment, and TCP and

 

UDP port numbers.

 

 

Drop policy

Tail drop.

 

 

Number of queues

16.

 

 

Maximum queue length

Infinite; really means that packets will not be tail dropped, but will be

 

queued.

 

 

Scheduling inside a single

FIFO.

queue

 

 

 

Scheduling among all

Services packets from a queue until a byte count is reached; round-

queues

robins through the queues, servicing the different byte counts for each

 

queue. The effect is to reserve a percentage of link bandwidth for each

 

queue.

 

 

Flow-Based WFQ, or simply WFQ, classifies traffic into flows. Flows are identified by at least five items in an IP packet.

Source IP address

Destination IP address

Transport layer protocol (TCP or UDP) as defined by the IP Protocol header field

TCP or UDP source port

TCP or UDP destination port

For perspective on the sequence of events for WFQ, marking the sequence number, and serving the queues, examine Figure 4-26.

306 Chapter 4: Congestion Management

Figure 4-26 WFQ—Assigning Sequence Numbers and Servicing Queues

3)Maximum Number of Queues

4)Maximum Queue Length

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) Scheduling Inside Queue

 

6) Scheduler Logic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Max 4096

 

 

 

Process: Take

 

 

 

 

1) Classification

Assign SN

2) Drop Decision

 

Queues

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

?

 

 

 

 

 

 

 

 

 

packet with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SN = Previous_SN

 

 

 

 

 

 

Max Length

 

 

 

lowest sequence

 

 

TX Queue/Ring

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+weight*length

Dropped

 

 

 

 

 

4096

 

 

 

 

number.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weight Based on

 

 

 

 

 

 

 

 

 

 

 

 

 

Result: Favors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP Precedence

 

 

 

 

 

 

 

 

.

 

 

 

 

flows with lower

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

byte volumes and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modified Tail

.

 

 

 

 

larger precedence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Always on Combination Of:

Drop Based on

 

 

 

 

 

 

values.

 

 

 

Hold Queue and

 

FIFO

 

 

 

 

 

 

 

- Source/destination IP Address

 

 

 

 

 

 

 

 

CDT

 

 

 

 

 

 

 

 

- Transport Protocol Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Source/Destination Port

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WFQ calculates the sequence number (SN) before adding a packet to its associated queue. The formula for calculating the SN for a packet is as follows:

Previous_SN + weight * new_packet_ength

Table 4-21 lists the weight values used by WFQ before and after the release of 12.0(5)T/12.1.

Table 4-21 Weight Values Used by WFQ

Precedence

Before 12.0(5)T/12.1

After 12.0(5)T/12.1

 

 

 

0

4096

32384

 

 

 

1

2048

16192

 

 

 

2

1365

10794

 

 

 

3

1024

8096

 

 

 

4

819

6476

 

 

 

5

682

5397

 

 

 

6

585

4626

 

 

 

7

512

4048

 

 

 

WFQ discards some packet when a queue’s congestive discard threshold (CDT) has been reached. To appreciate how the CDT is used, examine Figure 4-27.

Foundation Summary 307

Figure 4-27 WFQ Modified Tail Drop and Congestive Discard Threshold

Hold-queue

No

 

 

 

CDT

No

 

 

 

 

 

 

Enqueue New Packet

Calculate SN

 

 

Exceeded for

Limit

 

 

 

 

 

 

 

 

 

 

Exceeded?

 

 

 

 

This Queue?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No

 

 

Is There a Higher

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Packet

 

 

 

 

SN Enqueued in

 

Discard Highest

 

 

 

 

 

 

 

 

 

 

 

 

Discarded

 

 

 

 

Another Queue?

 

 

 

 

 

SN Packet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 4-22 and 4-23 list the configuration and exec commands related to WFQ.

Table 4-22 Configuration Command Reference for WFQ

 

Command

Mode and Function

 

 

 

 

fair-queue [congestive-discard-threshold [dynamic-queues

Interface configuration mode; enables

 

[reservable-queues]]]

WFQ, sets the CDT, sets maximum

 

 

number of queues, and sets the

 

 

number reserved for RSVP use

 

 

 

 

hold-queue length {in | out}

Interface configuration mode; changes

 

 

the length of the hold queue

 

 

 

Table 4-23 Exec Command Reference for WFQ

 

 

 

 

 

Command

Function

 

 

 

 

show queue interface-name interface-number [vc [vpi/] vci]]

Lists information about the packets

 

 

that are waiting in a queue on the

 

 

interface

 

 

 

 

show queueing [custom | fair | priority | random-detect

Lists configuration and statistical

 

[interface atm-subinterface [vc [[vpi/] vci]]]]

information about the queuing tool on

 

 

an interface

 

 

 

Table 4-24 summarizes some of the key features of WFQ.

308 Chapter 4: Congestion Management

Table 4-24 WFQ Functions and Features

WFQ Feature

Explanation

 

 

Classification

Classifies without configuration, based on source/destination IP address/

 

port, protocol type (TCP|UDP), and ToS.

 

 

Drop policy

Modified tail drop.

 

 

Number of queues

4096.

 

 

Maximum queue length

Congestive discard threshold per queue (max 4096), with an overall

 

limit based on the hold queue for all queues (max 4096).

 

 

Scheduling inside a single

FIFO.

queue

 

 

 

Scheduling among all

Serves lowest sequence number (SN). The SN is assigned when the

queues

packet is placed into the queue, as a function of length and precedence.

 

 

Table 4-25 summarizes some of the key features of CBWFQ.

Table 4-25 CBWFQ Functions and Features

CBWFQ Feature

Description

 

 

Classification

Classifies based on anything that MQC commands can match, just like

 

CB marking. Includes all extended IP ACL fields, NBAR, incoming

 

interface, CoS, precedence, DSCP, source/destination MAC, MPLS

 

Experimental, QoS group, and RTP port numbers

 

 

Drop policy

Tail drop or WRED, configurable per queue.

 

 

Number of queues

64.

 

 

Maximum queue length

64.

 

 

Scheduling inside a single

FIFO on 64 queues; FIFO or WFQ on class-default queue.

queue

 

 

 

Scheduling among all

Algorithm is not published. The result of the scheduler provides a

queues

percentage guaranteed bandwidth to each queue.

 

 

All the commands for CBWFQ are repeated for reference in Tables 4-26 and 4-27.

Table 4-26 Command Reference for CBWFQ

Command

Mode and Function

 

 

class-map class-map-name

Global config; names a class map,

 

where classification options are

 

configured.

 

 

match …

Class map subcommand; defines

 

specific classification parameters.

 

 

 

 

Foundation Summary 309

 

 

 

Table 4-26 Command Reference for CBWFQ (Continued)

 

 

 

 

 

Command

Mode and Function

 

 

 

 

match access-group {access-group | name access-group-

Access-control list (ACL).

 

name}

 

 

 

 

 

match source-address mac address

Source MAC address.

 

 

 

 

match ip precedence ip-precedence-value [ip-precedence-

IP precedence.

 

value ip-precedence-value ip-precedence-value]

 

 

 

 

 

match mpls experimental number

MPLS Experimental.

 

 

 

 

match cos cos-value [cos-value cos-value cos-value]

CoS.

 

 

 

 

match destination-address mac address

Destination MAC address.

 

 

 

 

match input-interface interface-name

Input interface.

 

 

 

 

match ip dscp ip-dscp-value [ip-dscp-value ip-dscp-value

IP DSCP.

 

ip-dscp-value ip-dscp-value ip-dscp-value ip-dscp-value

 

 

ip-dscp-value]

 

 

 

 

 

match ip rtp starting-port-number port-range

RTP’s UDP port number range.

 

 

 

 

match qos-group qos-group-value

QoS group.

 

 

 

 

match protocol protocol-name

NBAR protocol types.

 

 

 

 

match protocol citrix [app application-name-string].

NBAR Citrix applications.

 

 

 

 

match protocol http [url url-string | host hostname-string |

Host name and URL string.

 

mime MIME-type]

 

 

 

 

 

match any

Matches any and all packets.

 

 

 

 

policy-map policy-map-name

Global config; names a policy, which is

 

 

a set of actions to perform.

 

 

 

 

class name

Policy map subcommand; identifies the

 

 

packets to perform QoS actions on by

 

 

referring to the classification logic in a

 

 

class map

 

 

 

 

bandwidth {bandwidth-kbps | percent percent}

Class subcommand; sets literal or

 

 

percentage bandwidth for the class.

 

 

Must use either use actual bandwidth or

 

 

percent on all classes in a single policy

 

 

map.

 

 

 

 

fair-queue [queue-limit queue-value]

Class subcommand; enables WFQ in

 

 

the class (class-default only).

 

 

 

 

random-detect dscp dscpvalue min-threshold max-

Class subcommand; enables DSCP-

 

threshold [mark-probability-denominator]

based WRED in the class.

 

 

 

continues

310 Chapter 4: Congestion Management

Table 4-26 Command Reference for CBWFQ (Continued)

 

Command

Mode and Function

 

 

 

 

random-detect precedence precedence min-threshold max-

Class subcommand; enables

 

threshold mark-prob-denominator

precedence-based WRED in the class.

 

 

 

 

max-reserved-bandwidth percent

Interface subcommand; defines the

 

 

percentage of link bandwidth that can

 

 

be reserved for CBWFQ queues besides

 

 

class-default.

 

 

 

Table 4-27 Exec Command Reference for CBWFQ

 

 

 

 

 

Command

Function

 

 

 

 

show policy-map policy-map-name

Lists configuration information about

 

 

all MQC-based QoS tools

 

 

 

 

show policy-map interface-spec [input | output] [class

Lists statistical information about the

 

class-name]

behavior of all MQC-based QoS tools

 

 

 

To prevent LLQ from having the same problem as PQ, where packets in the highest-priority queue could dominate, LLQ’s scheduler actually works as shown in Figure 4-28.

Figure 4-28 Servicing Queues with LLQ and CBWFQ—The Real Story

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any

 

 

 

 

 

Pick Next Packet

Wait Until TX

 

 

No

Ring Has More

 

 

 

Packets in

 

 

 

 

 

 

 

from Other Non-

Room

 

 

 

LLQ?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LLQ Queues

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discard

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Packet

 

Packet

 

 

 

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

Put Packet in TX

 

 

 

 

 

 

 

 

 

Exceeds

 

 

 

 

 

 

 

 

 

 

Ring

 

 

Policed

 

 

 

 

 

 

 

 

 

 

 

 

No

 

 

 

 

 

 

 

 

 

 

Bandwidth?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The single additional configuration command for LLQ is listed in Table 4-28.

Table 4-28 Command Reference for LLQ

Command

Mode and Function

 

 

priority{bandwidth-kbps |

Class subcommand; enables LLQ in this class, reserves bandwidth, and

percent percentage}

enables the policing function. The burst for the policer can also be

[burst]

configured with this command.

 

 

 

 

 

Foundation Summary 311

 

 

 

 

 

Table 4-29 summarizes the main features of IP RTP Priority, and compares the features

 

with LLQ.

 

 

 

Table 4-29 Comparison of LLQ and IP RTP Priority Features

 

 

 

 

 

 

 

 

 

 

 

 

IP RTP

 

Feature

LLQ

 

Priority

 

 

 

 

 

 

Adds a priority queue to WFQ

No

 

Yes

 

 

 

 

 

 

Adds a priority queue to CBWFQ

Yes

 

Yes

 

 

 

 

 

 

Can classify on even UDP ports in a specified range

Yes

 

Yes

 

 

 

 

 

 

Can classify on anything MQC can use to classify

Yes

 

No

 

 

 

 

 

 

Reserves a configured amount of bandwidth

Yes

 

Yes

 

 

 

 

 

 

Bandwidth is policed, so priority queue cannot exceed the

Yes

 

Yes

 

configured bandwidth

 

 

 

 

 

 

 

 

 

Currently recommended best queuing tool for low latency

Yes

 

No

 

 

 

 

 

Table 4-30 lists the two configuration commands used with IP RTP Priority.

Table 4-30 Command Reference for IP RTP Priority

Command

Mode and Function

 

 

ip rtp priority starting-rtp-port-number port-number-

Interface configuration mode; enables IP

range bandwidth

RTP Priority on a subinterface or interface

 

 

frame-relay ip rtp priority starting-rtp-port-number

FRTS (Frame Relay traffic shaping) map-

port-number-range bandwidth

class configuration mode; enables IP RTP

 

Priority in an FRTS map class, which is then

 

enabled on a subinterface or DLCI (data-link

 

connection identifier)

 

 

Table 4-31 summarizes the details of the scheduler, drop, and maximum queues supported for the queuing tools covered in detail in this chapter.

Table 4-31 Summary of Scheduler, Drop, and Number of Queues

 

 

 

Max # of

Tool

Scheduler

Drop Policy

Queues

 

 

 

 

FIFO

Services packets in the same order that they arrived.

Tail drop

1

 

 

 

 

PQ

Always services higher-priority queues first; the

Tail drop

4

 

result is great service for the High queue, with

 

 

 

potential for 100% of link bandwidth. Service

 

 

 

degrades quickly for lower-priority queues.

 

 

 

 

 

 

continues

312 Chapter 4: Congestion Management

Table 4-31 Summary of Scheduler, Drop, and Number of Queues (Continued)

 

 

 

Max # of

Tool

Scheduler

Drop Policy

Queues

 

 

 

 

CQ

Services packets from a queue until a byte count is

Tail drop

16

 

reached; round-robins through the queues, servicing

 

 

 

the different byte counts for each queue. The effect

 

 

 

is to reserve a percentage of link bandwidth for each

 

 

 

queue.

 

 

 

 

 

 

WFQ

Services lowest sequence number (SN). SNs

Modified tail

4096

 

assigned when packet placed into queue, as a

drop*

 

 

function of length and precedence.

 

 

 

 

 

 

CBWFQ

Algorithm is not published. The result of the

Tail drop or

64

 

scheduler provides a percentage guaranteed

WRED

 

 

bandwidth to each queue.

 

 

 

 

 

 

LLQ

Always services low-latency queue first, but each

Tail drop or

64

 

low-latency queue is policed to prevent it from

WRED

 

 

dominating the link.

 

 

 

 

 

 

IP RTP Priority

Always services low-latency queue first, but queue

Tail drop

1

 

is policed to prevent it from dominating the link.

 

 

 

 

 

 

*WFQ’s modified tail drop includes a per-queue limit, an aggregate limit for all queues, with the ability to dequeue a previously enqueued packet if the new packet has a better SN.

Also make sure and review Tables 4-16 and 4-17 immediately preceding the Foundation Summary.