- •QoS Overview
- •“Do I Know This Already?” Quiz
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss Questions
- •Foundation Topics
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •Bandwidth
- •The clock rate Command Versus the bandwidth Command
- •QoS Tools That Affect Bandwidth
- •Delay
- •Serialization Delay
- •Propagation Delay
- •Queuing Delay
- •Forwarding Delay
- •Shaping Delay
- •Network Delay
- •Delay Summary
- •QoS Tools That Affect Delay
- •Jitter
- •QoS Tools That Affect Jitter
- •Loss
- •QoS Tools That Affect Loss
- •Summary: QoS Characteristics: Bandwidth, Delay, Jitter, and Loss
- •Voice Basics
- •Voice Bandwidth Considerations
- •Voice Delay Considerations
- •Voice Jitter Considerations
- •Voice Loss Considerations
- •Video Basics
- •Video Bandwidth Considerations
- •Video Delay Considerations
- •Video Jitter Considerations
- •Video Loss Considerations
- •Comparing Voice and Video: Summary
- •IP Data Basics
- •Data Bandwidth Considerations
- •Data Delay Considerations
- •Data Jitter Considerations
- •Data Loss Considerations
- •Comparing Voice, Video, and Data: Summary
- •Foundation Summary
- •QoS Tools and Architectures
- •“Do I Know This Already?” Quiz
- •QoS Tools Questions
- •Differentiated Services Questions
- •Integrated Services Questions
- •Foundation Topics
- •Introduction to IOS QoS Tools
- •Queuing
- •Queuing Tools
- •Shaping and Policing
- •Shaping and Policing Tools
- •Congestion Avoidance
- •Congestion-Avoidance Tools
- •Call Admission Control and RSVP
- •CAC Tools
- •Management Tools
- •Summary
- •The Good-Old Common Sense QoS Model
- •GOCS Flow-Based QoS
- •GOCS Class-Based QoS
- •The Differentiated Services QoS Model
- •DiffServ Per-Hop Behaviors
- •The Class Selector PHB and DSCP Values
- •The Assured Forwarding PHB and DSCP Values
- •The Expedited Forwarding PHB and DSCP Values
- •The Integrated Services QoS Model
- •Foundation Summary
- •“Do I Know This Already?” Quiz Questions
- •CAR, PBR, and CB Marking Questions
- •Foundation Topics
- •Marking
- •IP Header QoS Fields: Precedence and DSCP
- •LAN Class of Service (CoS)
- •Other Marking Fields
- •Summary of Marking Fields
- •Class-Based Marking (CB Marking)
- •Network-Based Application Recognition (NBAR)
- •CB Marking show Commands
- •CB Marking Summary
- •Committed Access Rate (CAR)
- •CAR Marking Summary
- •Policy-Based Routing (PBR)
- •PBR Marking Summary
- •VoIP Dial Peer
- •VoIP Dial-Peer Summary
- •Foundation Summary
- •Congestion Management
- •“Do I Know This Already?” Quiz
- •Queuing Concepts Questions
- •WFQ and IP RTP Priority Questions
- •CBWFQ and LLQ Questions
- •Comparing Queuing Options Questions
- •Foundation Topics
- •Queuing Concepts
- •Output Queues, TX Rings, and TX Queues
- •Queuing on Interfaces Versus Subinterfaces and Virtual Circuits (VCs)
- •Summary of Queuing Concepts
- •Queuing Tools
- •FIFO Queuing
- •Priority Queuing
- •Custom Queuing
- •Weighted Fair Queuing (WFQ)
- •WFQ Scheduler: The Net Effect
- •WFQ Scheduling: The Process
- •WFQ Drop Policy, Number of Queues, and Queue Lengths
- •WFQ Summary
- •Class-Based WFQ (CBWFQ)
- •CBWFQ Summary
- •Low Latency Queuing (LLQ)
- •LLQ with More Than One Priority Queue
- •IP RTP Priority
- •Summary of Queuing Tool Features
- •Foundation Summary
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •“Do I Know This Already?” Quiz
- •Shaping and Policing Concepts Questions
- •Policing with CAR and CB Policer Questions
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Foundation Topics
- •When and Where to Use Shaping and Policing
- •How Shaping Works
- •Where to Shape: Interfaces, Subinterfaces, and VCs
- •How Policing Works
- •CAR Internals
- •CB Policing Internals
- •Policing, but Not Discarding
- •Foundation Summary
- •Shaping and Policing Concepts
- •“Do I Know This Already?” Quiz
- •Congestion-Avoidance Concepts and RED Questions
- •WRED Questions
- •FRED Questions
- •Foundation Topics
- •TCP and UDP Reactions to Packet Loss
- •Tail Drop, Global Synchronization, and TCP Starvation
- •Random Early Detection (RED)
- •Weighted RED (WRED)
- •How WRED Weights Packets
- •WRED and Queuing
- •WRED Summary
- •Flow-Based WRED (FRED)
- •Foundation Summary
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •“Do I Know This Already?” Quiz
- •Compression Questions
- •Link Fragmentation and Interleave Questions
- •Foundation Topics
- •Payload and Header Compression
- •Payload Compression
- •Header Compression
- •Link Fragmentation and Interleaving
- •Multilink PPP LFI
- •Maximum Serialization Delay and Optimum Fragment Sizes
- •Frame Relay LFI Using FRF.12
- •Choosing Fragment Sizes for Frame Relay
- •Fragmentation with More Than One VC on a Single Access Link
- •FRF.11-C and FRF.12 Comparison
- •Foundation Summary
- •Compression Tools
- •LFI Tools
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •Call Admission Control Overview
- •Call Rerouting Alternatives
- •Bandwidth Engineering
- •CAC Mechanisms
- •CAC Mechanism Evaluation Criteria
- •Local Voice CAC
- •Physical DS0 Limitation
- •Max-Connections
- •Voice over Frame Relay—Voice Bandwidth
- •Trunk Conditioning
- •Local Voice Busyout
- •Measurement-Based Voice CAC
- •Service Assurance Agents
- •SAA Probes Versus Pings
- •SAA Service
- •Calculated Planning Impairment Factor
- •Advanced Voice Busyout
- •PSTN Fallback
- •SAA Probes Used for PSTN Fallback
- •IP Destination Caching
- •SAA Probe Format
- •PSTN Fallback Scalability
- •PSTN Fallback Summary
- •Resource-Based CAC
- •Resource Availability Indication
- •Gateway Calculation of Resources
- •RAI in Service Provider Networks
- •RAI in Enterprise Networks
- •RAI Operation
- •RAI Platform Support
- •Cisco CallManager Resource-Based CAC
- •Location-Based CAC Operation
- •Locations and Regions
- •Calculation of Resources
- •Automatic Alternate Routing
- •Location-Based CAC Summary
- •Gatekeeper Zone Bandwidth
- •Gatekeeper Zone Bandwidth Operation
- •Single-Zone Topology
- •Multizone Topology
- •Zone-per-Gateway Design
- •Gatekeeper in CallManager Networks
- •Zone Bandwidth Calculation
- •Gatekeeper Zone Bandwidth Summary
- •Integrated Services / Resource Reservation Protocol
- •RSVP Levels of Service
- •RSVP Operation
- •RSVP/H.323 Synchronization
- •Bandwidth per Codec
- •Subnet Bandwidth Management
- •Monitoring and Troubleshooting RSVP
- •RSVP CAC Summary
- •Foundation Summary
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •“Do I Know This Already?” Quiz
- •QoS Management Tools Questions
- •QoS Design Questions
- •Foundation Topics
- •QoS Management Tools
- •QoS Device Manager
- •QoS Policy Manager
- •Service Assurance Agent
- •Internetwork Performance Monitor
- •Service Management Solution
- •QoS Management Tool Summary
- •QoS Design for the Cisco QoS Exams
- •Four-Step QoS Design Process
- •Step 1: Determine Customer Priorities/QoS Policy
- •Step 2: Characterize the Network
- •Step 3: Implement the Policy
- •Step 4: Monitor the Network
- •QoS Design Guidelines for Voice and Video
- •Voice and Video: Bandwidth, Delay, Jitter, and Loss Requirements
- •Voice and Video QoS Design Recommendations
- •Foundation Summary
- •QoS Management
- •QoS Design
- •“Do I Know This Already?” Quiz
- •Foundation Topics
- •The Need for QoS on the LAN
- •Layer 2 Queues
- •Drop Thresholds
- •Trust Boundries
- •Cisco Catalyst Switch QoS Features
- •Catalyst 6500 QoS Features
- •Supervisor and Switching Engine
- •Policy Feature Card
- •Ethernet Interfaces
- •QoS Flow on the Catalyst 6500
- •Ingress Queue Scheduling
- •Layer 2 Switching Engine QoS Frame Flow
- •Layer 3 Switching Engine QoS Packet Flow
- •Egress Queue Scheduling
- •Catalyst 6500 QoS Summary
- •Cisco Catalyst 4500/4000 QoS Features
- •Supervisor Engine I and II
- •Supervisor Engine III and IV
- •Cisco Catalyst 3550 QoS Features
- •Cisco Catalyst 3524 QoS Features
- •CoS-to-Egress Queue Mapping for the Catalyst OS Switch
- •Layer-2-to-Layer 3 Mapping
- •Connecting a Catalyst OS Switch to WAN Segments
- •Displaying QoS Settings for the Catalyst OS Switch
- •Enabling QoS for the Catalyst IOS Switch
- •Enabling Priority Queuing for the Catalyst IOS Switch
- •CoS-to-Egress Queue Mapping for the Catalyst IOS Switch
- •Layer 2-to-Layer 3 Mapping
- •Connecting a Catalyst IOS Switch to Distribution Switches or WAN Segments
- •Displaying QoS Settings for the Catalyst IOS Switch
- •Foundation Summary
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •QoS: Tuning Bandwidth, Delay, Jitter, and Loss
- •QoS Tools
- •Differentiated Services
- •Integrated Services
- •CAR, PBR, and CB Marking
- •Queuing Concepts
- •WFQ and IP RTP Priority
- •CBWFQ and LLQ
- •Comparing Queuing Options
- •Conceptual Questions
- •Priority Queuing and Custom Queuing
- •CBWFQ, LLQ, IP RTP Priority
- •Comparing Queuing Tool Options
- •Shaping and Policing Concepts
- •Policing with CAR and CB Policer
- •Shaping with FRTS, GTS, DTS, and CB Shaping
- •Shaping and Policing Concepts
- •Congestion-Avoidance Concepts and RED
- •WRED
- •FRED
- •Congestion-Avoidance Concepts and Random Early Detection (RED)
- •Weighted RED (WRED)
- •Flow-Based WRED (FRED)
- •Compression
- •Link Fragmentation and Interleave
- •Compression Tools
- •LFI Tools
- •Call Admission Control Concepts
- •Local-Based CAC
- •Measurement-Based CAC
- •Resources-Based CAC
- •QoS Management Tools
- •QoS Design
- •QoS Management
- •QoS Design
- •LAN QoS Concepts
- •Catalyst 6500 Series of Switches
- •Catalyst 4500/4000 Series of Switches
- •Catalyst 3550/3524 Series of Switches
- •Foundation Topics
- •QPPB Route Marking: Step 1
- •QPPB Per-Packet Marking: Step 2
- •QPPB: The Hidden Details
- •QPPB Summary
- •Flow-Based dWFQ
- •ToS-Based dWFQ
- •Distributed QoS Group–Based WFQ
- •Summary: dWFQ Options
Congestion-Avoidance Concepts and Random Early Detection (RED) 475
Q&A
As mentioned in the Introduction, you have two choices for review questions. The questions that follow next give you a more difficult challenge than the exam itself by using an open-ended question format. By reviewing now with this more difficult question format, you can exercise your memory better, and prove your conceptual and factual knowledge of this chapter. You can find the answers to these questions in Appendix A.
The second option for practice questions is to use the CD-ROM included with this book. It includes a testing engine and more than 200 multiple-choice questions. You should use this CDROM nearer to the end of your preparation, for practice with the actual exam format. You can even customize the CD-ROM exam to include, or not include, the topics that are only on the CCIP QoS.
Congestion-Avoidance Concepts and Random Early
Detection (RED)
1Describe the function of the congestion window in TCP, and how it is changed as a result of packet loss.
2Identify the two TCP windowing mechanisms, and describe when each is used.
3Describe the process of TCP slow start, and when it occurs.
4Describe the process of TCP congestion avoidance, and when it occurs.
5Describe the meaning of the term “global synchronization,” and discuss what causes it.
6Define the meaning of the term “tail drop.”
7Define the meaning of the term “TCP starvation.”
8Does RED compare the actual queue depth or the average queue depth to queue thresholds when deciding whether it should discard a packet? Why this one, and not the other?
9Describe how RED uses actual queue depth to calculate average queue depth. Do not list the formula, but just describe the general idea.
10Assume the RED minimum threshold is 20, the maximum threshold is 40, and the mark probability denominator is 10. What must be true for RED to discard all new packets?
11Assume the RED minimum threshold is 20, the maximum threshold is 40, and the mark probability denominator is 10. What must be true for RED to discard 5 percent of all new packets?
476 Chapter 6: Congestion Avoidance Through Drop Policies
12Define how RED uses the mark probability denominator. Give one example.
13Define the term “exponential weighting constant.” If the value is lowered compared to the default setting of 9, how does RED behave differently?
Weighted RED (WRED)
14Spell out the words represented by the initials RED, WRED, and FRED.
15List the queuing tools that can be concurrently supported on an interface when WRED has been enabled directly on a serial interface.
16Identify the most important difference between RED operation and WRED operation.
17Describe how WRED “weights” packets.
18List the queuing tools that can enable WRED for use with some or all of their queues, effectively enabling WRED concurrently with the queuing tool.
19What command enables you to look at WRED drop statistics when WRED is configured inside an MQC class?
20Taking as many defaults as possible, list the configuration commands needed to configure precedence-based WRED on interface S1/1.
21Taking as many defaults as possible, list the configuration commands needed to configure DSCP-based WRED on interface S1/1.
22Taking as many defaults as possible, list the configuration commands needed to configure DSCP-based WRED inside class class1, inside policy map my-policy. (You can assume that the CBWFQ configuration has already been completed, and you just entered global configuration mode. Assume that you need just to enable WRED in class class1.)
23List the command needed to set the minimum threshold to 25, the maximum threshold to 50, and the mark probability denominator to 4, for precedence 2.
24What show command lists detailed statistics about random drops on interface S1/1?
Flow-Based WRED (FRED)
25List the queuing tools that can be concurrently supported on an interface when FRED has been enabled directly on a serial interface.
26Identify the most significant difference between FRED operation and WRED operation.
27List the three categories of flows defined by FRED, and identify which category has its packets discarded most aggressively.
28Describe how FRED prevents TCP starvation.
Flow-Based WRED (FRED) 477
29List the queuing tools that can enable FRED for use with some or all queues, effectively enabling FRED concurrently with the queuing tool.
30Suppose that an interface has five active flows, with Flow 1 consuming 20 queue entries, and a maximum queue size of 40. Describe the terms “maximum per-flow queue depth,” and give an example of how it is calculated with this example. Use default values for any information not stated in the question.
31Taking as many defaults as possible, list the configuration commands needed to configure precedence-based FRED on interface S1/1.
32Taking as many defaults as possible, list the configuration commands needed to configure DSCP-based FRED on interface S1/1.
This chapter covers the following exam topics specific to the DQOS and QoS exams:
DQOS Exam Topics
•Explain the need for link-efficiency tools.
•Explain available LFI techniques including MLP interleaving and FR fragmentation using FRF.11 Annex-C or FRF.12.
•Explain Real Time Protocol header compression (cRTP) as a tool for improving link efficiency.
•Configure and monitor various LFI methods and cRTP.
QoS Exam Topics
•Describe payload compression and payload compression algorithms available on Cisco routers.
•Describe header compression and header compression algorithms available on Cisco routers.
•Configure Cisco IOS header compression mechanisms.
•Describe link fragmentation and interleaving (LFI).
•Configure link fragmentation and interleaving (LFI) mechanisms on Cisco IOS routers.
C H A P T E R 7
Link-Efficiency Tools
Most WAN links are leased from a service provider, with one of the variables affecting the pricing being the bandwidth on the link. For instance, the distance and the bandwidth, or clock rate, on the link affect leased lines. Frame Relay service providers base their prices in part based on the access rate of the access links into the Frame Relay network, and the committed information rate (CIR) of the various virtual circuits (VCs).
If the offered load on the network consistently exceeds the bandwidth or clock rate of the link the traffic must flow across, unpredictable behavior can result. For example, queues consistently fill, causing more delay, jitter, and drops. If the offered load far exceeds the clock rate for a period of time, most data applications slow down significantly, with voice and video streams possibly even becoming unusable. Depending on how you configure quality of service (QoS) in the network, some traffic types may perform as expected, but with a likely result of allowing some other traffic types to degrade even more quickly, because most QoS tools by design end up favoring one type of traffic over another.
This chapter covers two classes of QoS tools that directly impact the usage of the bandwidth in a network—compression tools and link fragmentation and interleaving (LFI) tools. Compression tools compress the number of bytes in a packet so that fewer bytes need to be sent over a link.
LFI tools directly impact serialization delays—and serialization delay is impacted by actual link bandwidth. The slower the link, the longer it takes to serialize a packet. If a small packet must wait on a large packet to be serialized onto a link, the small packet may experience too much delay, particularly on slow-speed links. LFI tools reduce the delay experienced by a short packet by breaking larger packets into smaller pieces, and by transmitting the original small packets in between the fragments of the original larger packets. Smaller packets get better service, and in many cases, smaller packets are part of a delay-sensitive application, such as Voice over IP (VoIP).