- •Предисловие к первому и второму изданиям
- •Предисловие к третьему изданию
- •Правовые вопросы
- •1. Иерархия математических моделей эфира как сплошной среды
- •1.1. Микроуровневая и макроуровневая модели эфира
- •1.2. Сравнение уравнений эфира с классическими уравнениями механики сплошной среды
- •1.3. Инвариантность уравнений неразрывности и движения эфира относительно преобразования Галилея
- •1.4. Плотность энергии, плотность мощности эфира. Давление эфира. Уравнение состояния эфира
- •2. Вывод уравнений Максвелла из уравнений эфира
- •2.1. Вывод обобщённых уравнений Максвелла – Лоренца из уравнений эфира
- •2.2. Вычисление электрического и магнитного полей
- •2.3. Векторный потенциал. Физическая интерпретация
- •2.4. Обобщённые уравнения колебаний электрического и магнитного полей
- •2.5. *Изучение вопроса об инвариантности обобщённых и классических уравнений Максвелла при преобразовании Галилея
- •2.5.2. Преобразование производных и операторов при замене переменных Галилея. Инвариантность уравнений неразрывности и движения эфира в эйлеровых переменных
- •2.5.3. Причина потери галилеевой инвариантности в обобщённых уравнениях Максвелла – неинвариантное преобразование исходных уравнений эфира. Инвариантность обобщённых уравнений Максвелла при досветовой скорости движения системы координат
- •2.5.4. Галилеева неинвариантность классических уравнений Максвелла в отсутствие среды и их инвариантность в эфирной трактовке при досветовой скорости движения системы координат
- •2.6. Общие замечания
- •3. Заряд, его электрическое поле. Теорема Гаусса. Закон Кулона. Электрический потенциал. Связь потенциального электрического поля с градиентом давления эфира. Сохранение заряда
- •4. Волновые процессы в эфире
- •4.1. Уравнения малых колебаний эфира. Некоторые волновые решения исходных уравнений эфира
- •4.2. Непригодность квантовой механики для полноценного описания природы
- •4.2.1. Анализ основ квантовой механики с позиций методологии математического моделирования
- •4.2.2. Вывод уравнения Шрёдингера из уравнений эфира. Эфирная интерпретация волновой функции. Ошибочность отождествления частицы и волны
- •4.2.4. Неадекватность интерпретации экспериментов, якобы обосновывающих квантовую механику
- •4.2.5. Основные выводы
- •5. Энергия электромагнитного поля
- •5.1. Общие формулы для плотностей энергии и мощности электромагнитного поля
- •5.2. Плотность энергии электромагнитной волны
- •5.3. Интерпретация энергии кванта света, постоянной Планка, волны де Бройля
- •6. Разрывы в эфире. Эффекты квантования
- •6.1. Самопроизвольное формирование разрывов
- •6.2. Условия на поверхности разрыва
- •6.3. Пример квантования
- •6.4. Эфирное представление условий разрыва магнитного и электрического полей
- •7. Вывод закона Био – Савара из уравнений эфира
- •9. Основной закон электромагнитной индукции. Электродвижущая сила. Правило Ленца
- •9.1. Основной закон электромагнитной индукции
- •9.2. Галилеева инвариантность основного закона электромагнитной индукции
- •10. Вихревое движение
- •10.1. Замкнутая вихревая трубка как основная устойчивая структура вихревого движения эфира
- •10.2. Вихревой импульс эфира. Закон сохранения вихревого импульса. Сохранения момента магнитного поля
- •11. Внешняя сила, действующая со стороны среды на завихренное течение эфира. Обобщение силы Жуковского для случая трёхмерного частично или полностью проницаемого объекта
- •11.1. Обобщение силы Жуковского
- •11.2. Движение элементарного объёма эфира в сильных внешних магнитном и электрическом полях. Ларморовский радиус вращения элементарного объёма эфира. Циклотронный эфирный резонанс
- •12. Электрический ток в проводниках
- •12.1. Токи вне и внутри проводников. Законы Ампера
- •12.2. Закон Ома. Электрическая проводимость
- •12.3. Закон Джоуля и Ленца
- •12.4. Влияние распределения скорости эфира внутри провода на создаваемое в нём магнитное поле и плотность электрического тока
- •12.5. Сверхпроводимость
- •13. Силовое воздействие эфира на объект, вызванное наличием градиента давления
- •14. Эфирный аналог теоремы Бернулли. Эффекты, обусловленные уравнением состояния эфира
- •14.1. Теорема Бернулли в эфире. Сравнение интеграла Бернулли с уравнением состояния эфира
- •14.3. Механизм воздействия обобщённой силы Жуковского
- •14.4. Принцип перемещения в эфире без отбрасывания количества движения
- •14.5. Плотность кинетической энергии эфира в электроне и протоне. Технологии, основанные на превращении осязаемой материи в поток эфира. Эфиробарический боеприпас
- •15. Классификация установившихся потоков эфира
- •15.1. Электрический поток эфира
- •15.2. Гравитационный поток эфира
- •15.3. Магнитный поток эфира
- •16. Силовое воздействие потока эфира на объект
- •16.1. Воздействие на заряженный объект. Сила Лоренца
- •16.2. Сила эфирного гравитационного притяжения. Гравитационная и инертная массы
- •17. Взаимодействие объектов
- •17.1. Закон Кулона для двух заряженных объектов
- •17.2. Закон гравитационного тяготения
- •18. Эфирная трактовка в электротехнике и электрохимии
- •18.1. Создание электрического тока в проводе. Падение напряжения на участке цепи
- •18.2. Мощность электрической цепи
- •18.3. Электрическое сопротивление в электрохимической ячейке и газовом разряде
- •18.4. Электрическое сопротивление в проводе
- •18.5. Электроёмкость, конденсаторы
- •18.6. Уравнение тока в контуре постоянной формы
- •18.8. Магнитная энергия замкнутого проводника с током в магнитном поле. Плотность магнитной энергии в цепи
- •18.9. Полная электромагнитная мощность цепи с током. Вектор Умова – Пойнтинга
- •18.10. Взрыв проволочек электрическим током в вакууме. Взрывная электронная эмиссия
- •18.11. Э.д.с. Жуковского. Униполярный генератор
- •18.12. Эффект Холла. Постоянная Холла
- •18.13. Электростатические эффекты
- •18.14. Электростатические устройства
- •18.15. Эксперимент для проверки закона сохранения заряда объектом на длительном промежутке времени
- •18.16. Удержание плазмы в тороидальных ловушках. Обобщение математических моделей плазмы
- •19. Интерпретация магнитных явлений
- •19.1. Потоки эфира, создаваемые доменом и постоянным магнитом
- •19.2. Магнит и ферромагнитный материал
- •19.3. Проводящий немагнитный материал и магнит
- •19.4. Проводник с током и магнит
- •19.5. Взаимодействие магнитов друг с другом
- •19.6. О попытках создания двигателя или генератора энергии на основе перемещения системы постоянных магнитов
- •20. Оценка плотности невозмущённого эфира
- •20.1. Единицы измерения плотности эфира
- •20.2. Оценки на основе экспериментов с лазерами
- •20.3. Оценки с использованием эфирной модели фотона и характеристик электромагнитного поля в нём
- •20.4. Оценка из эфирной модели фотона и его импульса
- •20.5. Оценки с применением эфирных моделей электрона и протона
- •20.6. Оценка на основе данных о кулоновском барьере
- •20.7. Основные выводы. Значение плотности эфира
- •20.8. Ошибочность принятия диэлектрической проницаемости вакуума в качестве невозмущённой плотности эфира
- •21. Структура носителей эфира – ньютониев. Кинетические эффекты в эфире и веществе
- •21.1. Давление невозмущённого эфира
- •21.2. Масса и размер носителей эфира – ньютониев. Среднее расстояние между ними
- •21.3. Распределение ньютониев при хаотическом тепловом и направленном движении
- •21.4. Краткий обзор моделей неравновесных, необратимых процессов и коэффициентов переноса в физике. Применение к описанию кинетики ньютониев
- •21.5. Теплопередача в эфире. Теплоёмкость эфира
- •21.6. Теплопередача в твёрдом веществе
- •21.7. Вязкость эфира
- •21.8. Самодиффузия в эфире
- •21.9. Электрическая проводимость эфира и вещества при отсутствии свободных зарядов
- •21.10. Оценка параметров эфирной модели электропроводности по опытным данным
- •21.11. Закон Видемана и Франца в металле и эфире
- •21.12. Давление эфира внутри твёрдых материалов и жидкостей
- •21.13. Слипание пластин с гладкой поверхностью, эффект Казимира. Фазовый переход состояний объектов. Радиоактивный распад
- •21.14. Явления в контактах
- •21.15. Электроотрицательность химических элементов
- •21.16. Плотность тока эфира в газовом разряде
- •21.17. Нецелесообразность применения понятия термодинамической энтропии в модели эфира
- •22. Оценка радиусов пограничных слоёв, обуславливающих возникновение силы Лоренца и силы гравитации
- •22.1. Заряженные объекты
- •22.2. Объекты, обладающие массой. Оценка скорости вращения гравитационного потока эфира вокруг Земли, его градиента давления и давления
- •23. Сводка экспериментальных фактов, подтверждающих наличие эфира
- •23.1. Основные общие законы электродинамики и гравитации
- •23.2. Электрический ток в проводе
- •23.2.1. Внутренняя противоречивость модели свободных электронов в твёрдом проводнике
- •23.2.2. Проблемы интерпретации опытов в электронной теории проводимости
- •23.2.3. Расчёт течения эфира внутри провода
- •23.3. Эксперименты с униполярным генератором. Эффект Аспдена
- •23.5. Теплопроводность металлов
- •23.5.1. Теплопроводность в поле силы тяготения
- •23.5.2. Теплопроводность во вращающемся диске
- •23.5.3. Теплопроводность при наличии вибрации
- •23.6. Вращение тел при отсутствии внешнего магнитного поля
- •23.6.1. Опыт Толмена и Стюарта с вращающейся катушкой
- •23.6.2. Инерционный опыт Лепёшкина с вращающейся спиралью
- •23.6.3. Создание магнитного поля вращающимся сверхпроводником, ферромагнетиком и другими объектами. Момент Лондона. Эффект Барнетта. Гравитомагнитный момент Лондона
- •23.6.4. Создание в эфире фантома вращением магнитного диска
- •23.6.5. Электромагнитное поле, создаваемое камертоном
- •23.6.6. Магнитное поле вращающегося немагнитного диска. Проект экспериментов
- •23.6.7. Опыт с вращающимся диском и флюгером
- •23.6.8. Ошибочные трактовки движения объектов в некоторых опытах как результата механического взаимодействия с эфиром
- •23.7. О разрушении материала вращением
- •23.8. Разрушение материала лазером
- •23.9. Эксперименты в техническом вакууме
- •23.9.1. Темновой ток
- •23.9.2. Темновой ток в присутствии магнита
- •23.9.3. Мельничка
- •23.9.4. Коловрат
- •23.9.6. Автоэлектронная эмиссия и фотоэмиссия электронов из проводника
- •23.9.7. Пробойный ток
- •23.10. Противодействие гравитации. Экранировка гравитационного потока эфира и его изменение
- •23.10.1. Вращение частично сверхпроводящего керамического диска в магнитном поле. Противодействие гравитации в эксперименте Подклетнова
- •23.10.2. Уменьшение веса электрона в вакуумной трубке, окружённой сверхпроводником, за счёт экранировки гравитационного потока эфира
- •23.10.3. Эксперименты В.В. Чернова по изменению силы тяжести. Создание фантомов в эфире вращающимся стальным маховиком, электрическим током и крутящимся магнитом
- •23.10.4. Экранировка гравитационного потока эфира атомарным порошком
- •23.10.5. Проект стенда для опытов с гравитацией
- •23.11. Черенковское излучение в эфире
- •23.12. Аномалии орбит первых спутников Фон Брауна
- •23.13. Эфирная интерпретация принципа работы электродвигателя на подшипниках
- •23.13.1. Простейшая эфирная модель электродвигателя на подшипниках
- •23.13.2. Анализ эфирной модели
- •23.13.3. Выводы и перспективы применения
- •23.14. Странное излучение, наблюдаемое при низкотемпературных ядерных реакциях (LENR)
- •24. Эфирная модель шаровой молнии
- •24.1. Аномальные свойства ШМ
- •24.2. Попытки объяснения ШМ без учёта эфира
- •24.3. Простейшая эфирная модель ШМ. Трактовка аномальных свойств
- •24.4. Интерпретация экспериментов Теслы с ШМ. Резонансный механизм аномальных явлений в электротехнических устройствах
- •25. Эфирная модель строения Земли
- •26. Информационная составляющая биологических систем и её проявления
- •27. «Путешествия» во времени
- •Заключение
- •Приложение 1. Вывод уравнения Ампера
- •Приложение 2. О поисках эфирного ветра
- •Приложение 3. О движущихся источниках света
- •Приложение 4. Траектории лагранжевых частиц для уравнения движения с нулевой правой частью
- •Приложение 5. Новые системы единиц измерения, связанные с эфиром
- •Приложение 6. Концентрации электронов и ионов в воздухе при низком давлении
- •Приложение 7. Ионный ветер в коронном разряде
- •Литература
- •Литература, добавленная во 2-м издании
- •Литература, добавленная в 3-м издании
- •Представления некоторых великих учёных об устройстве материи
- •Цитаты из высказываний об изданиях книги
- •Фальсификации, искажения, непонимание методологии и результатов книги
19.6.О попытках создания двигателя или генератора энергии на основе перемещения системы постоянных магнитов
Проведённый в п. 19.2, 19.5 анализ обосновывает разумность попыток разработки устройств, использующих разность давлений эфира или кинетическую энергию эфира для генерации энергии либо совершения механической работы. Возникает вопрос: можно ли создать двигатель или генератор энергии за счёт изменения взаимного расположения постоянных магнитов? Обсудим этот вопрос с позиций теории эфира.
Рассмотрим систему магнитов, соединённых механическими связями, позволяющими изменять расположение магнитов по отношению друг к другу. Поместим эту систему в некоторую изолированную от внешних воздействий область эфира , не содержащую никакого вещества за исключением системы магнитов.
Многочисленные опыты, известные из публикаций, показывают, что магнитные свойства магнита (течение эфира внутри и вне его) практически не меняются в результате относительно медленного перемещения магнита во внешнем магнитном поле по произвольной траектории в исходную точку, если в этот момент внешнее магнитное поле также возвращается в исходное состояние. То есть течение эфира при возвращении магнита в исходное положение остаётся тем же и вне, и внутри магнита.
Устойчивости магнитных свойств постоянного магнита к не слишком сильному внешнему магнитному полю можно дать наглядную эфирную трактовку. Магнит взаимодействует с внешним магнитным полем посредством эфирных вихрей (п. 19.1), созданных доменными эфирными токами в магните, а особенность устройства структурных элементов постоянного магнита (которая пока ещё не до конца изучена) препятствует влиянию внешнего магнитного поля на ориентацию доменных токов внутри магнита.
350
Множество опытов, включая попытки создания сверхъединичных устройств [125], показывает, что при относительно медленном движении после возвращения системы магнитов в исходное положение магнитные свойства каждого из них практически не меняются. В результате магнитное поле, созданное всеми магнитами, возвращается в исходное состояние.
Магнитное поле пропорционально ротору (20) плотности по-
тока эфира . Поэтому распределение ротора плотности потока возвращается в исходное состояние. Ротор характери-
эфира в
зует только часть свойств плотности потока , однако при от- |
||
носительно |
медленном движении магнитов какие-либо суще- |
|
ственные эффекты не регистрируются доступными |
средствами. |
В частности, электрическим полем, которое может возникать со- |
|||
, а также и по |
|
|
|
гласно (29), можно пренебречь. Поэтому естественно предполо- |
|||
плотности |
кинетической |
энергии эфира (12), причём независимо |
|
жить, что не только ротор , но и сама плотность потока эфира |
|||
|
|
отдельности возвращаются в исходное со- |
стояние. Это означает, что в области не происходит изменения от того, по какой траектории двигались магниты.
Раз в не меняется плотность кинетической энергии, то, со-
гласно уравнению состояния эфира (15), при отсутствии плотно- |
||
сти энергии внешних источников |
не меняется и плотность |
|
энергии , запасённая в напряжениях эфира. |
||
Идентичность течений и плотности= 0 |
напряжений эфира в |
|
начальный и конечный моменты времени, соответствующие воз- |
вращению магнитов в исходное положение, влечёт равенство интегралов по области от их суммы в эти моменты времени. То
есть в начальный и конечный моменты времени суммарная энер- |
||
гия эфира в одинакова |
. Тогда внешняя сила, перемещающая |
|
магниты, не совершает работу, изменяющую энергию . |
||
По третьему |
закону Ньютона сила, действующая на систему |
магнитов, равна силе, действующей со стороны системы магнитов. Поэтому система магнитов не совершает и внешнюю работу.
351
На отдельных участках движения магнитов между начальным и конечным моментами времени может совершаться механическая работа, обусловленная изменением баланса между кинетической энергией и давлением эфира (при сохранении их суммы (15)), но результирующая работа по возвращению магнитов в исходное положение всё равно остаётся нулевой, иначе вначальный и конечный моменты изменилась бы энергия эфира в
. Например, при соединении двух магнитов разноимёнными полюсами совершается механическая работа и происходит заметное увеличение их общего магнитного поля по сравнению с полем каждого магнита в отдельности. Работа давления эфира при сближении магнитов идёт на увеличение скорости движения эфира (магнитного поля) внутри и вне магнитов. Однако при разъединении магнитов работа совершается в обратном направлении.
Таким образом, в изолированной области эфира любое циклическое относительно медленное перемещение системы магнитов, при котором в какой-то момент времени эта система возвращается в исходное положение, не приводит к приращению энергии эфира на одном цикле. Это означает, что за счёт перемещения магнитов в рассматриваемых условиях использовать кинетическую энергию и энергию внутренних напряжений (давления) эфира для построения циклического генератора энергии или двигателя не удастся. Основная физическая причина такого вывода состоит в восстановлении магнитных свойств постоянного магнита на каждом периоде в периодически меняющемся внешнем магнитном поле.
Обманчивый вывод о возможности получения выигрыша в работе может дать впечатление о том, что разъединять два магнита легче сдвигом перпендикулярно магнитному полю, чем отрывом в направлении магнитного поля. Для изучения данного вопроса авторы совместно с И.Н. Степановым и В.А. Чижовым сконструировали стенд, на котором с помощью динамометра можно было измерять силу притяжения магнитов в зависимости от расстояния между ними при отрыве и сдвиге. Работа силы
352