
- •Лекции по
- •Учебный материал. Введение, основные понятия сау. Понятие об автоматическом управлении
- •Классификация сау
- •Лекция 2. Функциональные элементы систем автоматического управления
- •Учебный материал Классификация функциональных элементов
- •Классификация сигналов, действующих в сау
- •Статические характеристики звеньев сау
- •Дифференциальная чувствительность звеньев
- •Лекция 3. Принципы управления сау
- •Учебный материал Принципы регулирования сау
- •Измерительные и исполнительные устройства
- •Лекция 4. Основные задачи автоматического управления
- •Учебный материал
- •Задачи программного управления.
- •Задачи стабилизации.
- •Лекция 5. Линеаризация уравнений и звеньев сау
- •Учебный материал Положения, лежащие в основе линеаризации.
- •Переход от дифференциального уравнения порядка nк системе изn-дифференциальных уравнений 1-го порядка
- •Геометрическая интерпретация и пример линеаризации.
- •Пример 2. Линеаризация водоема с карасями.
- •Тема 2. Линейные системы автоматического управления Лекция 6.
- •Учебный материал Вывод дифференциальных уравнений звеньев автоматики
- •Лекция 7
- •Учебный материал Передаточные функции звеньев и систем автоматического управления
- •Лекция 8.
- •Учебный материал Типовые динамические звенья автоматики
- •Лекция 9.
- •Учебный материал Передаточные функции сау
- •Лекция 10.
- •Учебный материал. Эквивалентные преобразования структурных схем
- •Основные правила эквивалентного преобразования
- •Лекция 11.
- •Учебный материал Типовые воздействия в автоматике
- •Тема 3. Частотные характеристики звеньев и систем Лекция 12.
- •Учебный материал Частотные характеристики звеньев сау
- •Лекция 13.
- •Учебный материал Порядок нахождения ачх и фчх
- •Годограф афчх инерционного звена. Звена
- •Реализация инерционного звена.
- •Логарифмические частотные характеристики инерционного звена.
- •Настоящая лачх
- •Лекция 14.
- •Операционный усилитель, охваченный комплексной оос.
- •Интегрирующее звено
- •Переходная функция интегратора
- •Весовая функция интегратора
- •Годограф афчх интегрирующего звена. Звена
- •Лачх и лфчх интегратора.
- •Точность работы такого интегратора увеличивается с ростом частоты. Именно поэтому термин "интегрирующая rCцепочка" имеет смысл.
- •Лекция 15 Реальное дифференцирующее звено. Колебательное звено.
- •Учебный материал
- •Годограф афчх реального дифференцирующего звена.
- •Колебательное звено
- •Годограф афчх инерционного звена. Звена
- •Лачх и лфчх характеристики колебательного звена.
- •Лекция 16.
- •Учебный материал Логарифмические координаты
- •Лекция 17.
- •Учебный материал Амлитудо-фазовые и логарифмические частотные характеристики сау
- •Тема 4. Структурный анализ систем автоматического управления Лекция 18.
- •Учебный материал
- •Метод последовательного логарифмирования
- •Лекция 19
- •Учебный материал
- •Блок имеет множество входов и выходов.
- •Периодическая функция с периодом т.
- •Спектр периодической функции находится в точках 2к/т.
- •Непериодическая функция.
- •Спектр непериодической функции.
- •Логарифмические частотные характеристики
- •Лекция 20 Многомерные сау со многими входами и выходами.
- •Учебный материал
- •Вобщем случае система линейных дифференциальных уравнений имеет следующий вид:
- •Тема 5. Устойчивость систем автоматического управления Лекция 21
- •Учебный материал Устойчивость систем автоматического регулирования
- •Методы определения устойчивости
- •Условие устойчивости
- •Теорема Ляпунова
- •Лекция 22
- •Учебный материал Основные критерии устойчивости:
- •Лекция 23
- •Учебный материал Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерии устойчивости Найквиста
- •Лекция 24
- •Учебный материал Влияние параметров системы на ее устойчивость
- •Лекция 25
- •Учебный материал
- •Лекция 26
- •Учебный материал Понятие запаса устойчивости по амплитуде и фазе.
- •Устойчивость и запасы устойчивости на языке лачх и лфчх.
- •Влияние звена чистого запаздывания на устойчивость. Чистое запаздывание– это часть системы (цепь или блок), при прохождении которой сигнал не меняет своей формы, но задерживается на время .
- •Тема 6. Качество процессов управления Лекция 27
- •Учебный материал Качество процессов управления
- •Лекция 28
- •Учебный материал Степень устойчивости и степень колебательности систем
- •Лекция 29
- •Учебный материал Интегральные оценки качества сар
- •Порядок вычисления интегральных оценок
- •Лекция 30
- •Учебный материал Корневые критерии качества систем автоматического регулирования
- •Степень колебательности.
- •Определение параметров системы (регулятора) по заданной степени колебательности.
- •Метод смещенного уравнения.
- •Построение областей равной степени колебательности в плоскости параметров системы
- •Анализ качества регулирования.
- •Тема 7. Коррекция систем автоматического управления Лекция 31
- •Учебный материал Частотные оценки качества сар
- •Лекция 32
- •Учебный материал Синтез корректирующих устройств
- •Лекция 33
- •Учебный материал Точность сау.
- •Точность по задающему воздействию.
- •Годограф охватывает точку -1.
- •Потеря запаса устойчивости при увеличении коэффициента усиления.
- •Таким образом, увеличение коэффициента усиления разомкнутой системы уменьшает коэффициенты ошибок с0 иС1то есть, в частности, ошибку при ступенчатомUзад(t).
- •Лекция 34
- •Учебный материал Методы повышения точности сау
- •Точность по возмущающему воздействию.
- •Динамическая точность.
- •Лекция 35
- •Учебный материал Случайные процессы в сау. Линейная оптимальная фильтрация.
- •Модели случайных сигналов в сау.
- •Реализация случайного процесса
- •Типичный график корреляционной функции.
- •Регулятор
- •Фильтрация помех.
- •Лекция 36
- •Учебный материал Нелинейные системы автоматического управления
- •Лекция 37
- •Учебный материал Основные виды нелинейностей в сау
- •Лекция 38
- •Учебный материал Релейные элементы-
- •Лекция 39
- •Учебный материал Методы исследования нелинейных систем
- •Лекция 40
- •Учебный материал Характеристики нелинейных систем
- •Метод фазовой плоскости (фазовой траектории)
- •Лекция 41
- •Учебный материал Метод изоклин
- •Метод припасовывания (сшивания).
- •Лекция 42
- •Учебный материал Особые траектории
- •На рис.2 представлена фазовая плоскость хар-ся устойчивым фокусом и неустойчивым предельным циклом.
- •Лекция 43
- •Учебный материал
- •В результате получим следующие значения амплитуды, частоты и периода:
- •Лекция 44
- •Учебный материал Получение кривой переходного процесса по фазовой траектории системы (графический метод)
- •1. Аппроксимируем фаз.Траекторию отрезками прямых 21, 32, 43…
- •Метод гармонического баланса
- •Лекция 45
- •Учебный материал Метод гармонической линеаризации
- •Основное уравнение гармонического баланса
- •Лекция 46
- •Учебный материал Способ Гольдфарба
- •Способ Коченбургера
- •Лекция 47
- •Учебный материал Способ Попова
- •Влияние параметров системы на автоколебания
- •Условие применимости метода гармонического баланса
- •Метод малого параметра
- •Назовите условие применимости метода гармонического баланса
- •Выделение отдельных составляющих движения
- •Лекция 49
- •Учебный материал Основные теоремы метода разделения движений
- •Условия применимости метода
- •Лекция 50
- •Учебный материал Импульсные системы
- •Варианты выходных последовательностей импульсных звеньев
- •Дискретные системы автоматического управления. Типы дискретизации. Структурные схемы импульсных систем
- •Лекция 51
- •Учебный материал Понятие решетчатой и модулированной функций. Дискретное преобразование Лапласа
- •Дифференцирование и интегрирование решетчатых функций
- •Лекция 52
- •Учебный материал Исследование устойчивости системы по разностному уравнению
- •Критерий устойчивости импульсных систем
- •Лекция 53
- •Учебный материал Свойства дискретного преобразования Лапласа
- •Лекция 54
- •Учебный материал Случайные процессы в системах автоматического регулирования.
- •Лекция 55
- •Учебный материал Случайные процессы
- •Лекция 56
- •Учебный материал Стационарные случайные процессы
- •Лекция 57
- •Учебный материал Корреляционная функция
- •Лекция 58
- •Учебный материал Спектральная плотность стационарных процессов
- •Спектральная плотность вычисляется по известной корреляционной функции при помощи формул.
- •Лекция 59
- •Учебный материал Расчеты по минимуму среднеквадратичной ошибки
- •Глоссарий
- •Основная и дополнительная литература
Лекция 40
Цель лекции: изучение устойчивости нелинейных систем, построение фазовой плоскости, построение фазовой траектории.
Задачи лекции:
Функция Ляпунова.
Фазовая траектория нелинейной системы.
Фазовый портрет нелинейной системы.
Желаемый результат:
Студенты должны знать:
Определение устойчивости нелинейной системы с помощью формулы Ляпунова;
Определение фазовой траектории нелинейной системы;
Определение фазового портрета нелинейной системы.
Учебный материал Характеристики нелинейных систем
Система называется асимптотически устойчивой в смысле Ляпунова, если при V>0 имеет смысл W<0.
Система называется устойчивой в смысле Ляпунова, если при V>0, W=0.
Функция V, удовлетворяющая заданным условиям, называется функцией Ляпунова.
Знакоопределенная
функция V
является непрерывной диф.ф. и при V>0
неограниченно растет с увеличением Xi,
т.е. limV.
Т.о. задача исследования нелинейных систем сводится к определению функции Ляпунова и ее производной.
(6)
Общее правило отыскания функции Ляпунова отсутствует, что затрудняет применение прямого метода Ляпунова.
В общем случае при заданных нелинейных уравнениях (2) можно подобрать несколько различных вариантов функции Ляпунова, т.к. требуется только знакоопределенность функции V и W.
Различные варианты функции V дают различные варианты устойчивости САУ, следовательно метод Ляпунова дает возможность получить достаточные условия устойчивости, которые не всегда будут необходимыми, т.е. при выполнении условий устойчивости, соотв. V, система будет устойчивой, но эти условия могут не охватывать всей области устойчивости системы по параметрам. То того как подобрана функция Ляпунова зависит на сколько близки будут полученные достаточные условия к необходимым и достаточным условиям.
Метод фазовой плоскости (фазовой траектории)
Нелинейные системы описываются нелинейными дифференциальными уравнениями общих методов решения, которых нет. В случае отсутствия решения анализ систем выполняется обходимыми приемами, одним из которых является метод фазового пространства.
Фаза
или состояние системы характеризуется
рядом параметров: входной
и выходной
величиной, скоростного изменения
выходной величины
,
точностью управления
и т.д. Чем выше порядок системы, тем
больше параметров, описывающих состояние
системы. Для системыn-го
порядка параметров, характеризующих
состояние системы должно быть
.
Набору координат соответствует n-мерное пространство с одноименными координатами осей. Это пространство называется фазовым. Если состояние системы меняется, то соответствующая точка начинает перемещаться в фазовом пространстве, вычерчивая кривую, называемую фазовой траекторией. Фазовая траектория является исчерпывающей характеристикой поведения системы.
Вариант фазовой траектории для 3х-мерного пространства приведен на рис.1:
Наибольшей
информативностью обладает фазовая
траектория в пространстве отклонений.
Для каждой координаты
переходят к ее приращениям относительно
установившегося значения
.В качестве другой
координаты обычно используется скорость
изменения приращения
,
т.е.
.
Фазовая
траектория, построенная на плоскости
в координатах
,
,
называется фазовым портретом (см. рис.2):
Пусть
некоторая система выведена из состояния
устойчивости в т..
Состояние системы изменится в соответствии
с линией 1. Эта линия в процессе работы
СУ приближается к началу координат,
т.е. соответствует устойчивой системе.
Если систему вывести в т.
,
то состояние системы описывается фазовой
траекторией 2. Фазовая траектория
удаляется от начала координат и поэтому
соответствует неустойчивой системе.
Таким образом, по характеру фазовой
траектории системы можно судить о ее
поведении, о устойчивости и о качестве
управления.
Вопросы самоконтроля:
Опишите порядок определения устойчивости нелинейной системы с помощью формулы Ляпунова.
Дайте определение фазовой траектории нелинейной системы.
Дайте определение фазового портрета нелинейной системы.