
- •Лекции по
- •Учебный материал. Введение, основные понятия сау. Понятие об автоматическом управлении
- •Классификация сау
- •Лекция 2. Функциональные элементы систем автоматического управления
- •Учебный материал Классификация функциональных элементов
- •Классификация сигналов, действующих в сау
- •Статические характеристики звеньев сау
- •Дифференциальная чувствительность звеньев
- •Лекция 3. Принципы управления сау
- •Учебный материал Принципы регулирования сау
- •Измерительные и исполнительные устройства
- •Лекция 4. Основные задачи автоматического управления
- •Учебный материал
- •Задачи программного управления.
- •Задачи стабилизации.
- •Лекция 5. Линеаризация уравнений и звеньев сау
- •Учебный материал Положения, лежащие в основе линеаризации.
- •Переход от дифференциального уравнения порядка nк системе изn-дифференциальных уравнений 1-го порядка
- •Геометрическая интерпретация и пример линеаризации.
- •Пример 2. Линеаризация водоема с карасями.
- •Тема 2. Линейные системы автоматического управления Лекция 6.
- •Учебный материал Вывод дифференциальных уравнений звеньев автоматики
- •Лекция 7
- •Учебный материал Передаточные функции звеньев и систем автоматического управления
- •Лекция 8.
- •Учебный материал Типовые динамические звенья автоматики
- •Лекция 9.
- •Учебный материал Передаточные функции сау
- •Лекция 10.
- •Учебный материал. Эквивалентные преобразования структурных схем
- •Основные правила эквивалентного преобразования
- •Лекция 11.
- •Учебный материал Типовые воздействия в автоматике
- •Тема 3. Частотные характеристики звеньев и систем Лекция 12.
- •Учебный материал Частотные характеристики звеньев сау
- •Лекция 13.
- •Учебный материал Порядок нахождения ачх и фчх
- •Годограф афчх инерционного звена. Звена
- •Реализация инерционного звена.
- •Логарифмические частотные характеристики инерционного звена.
- •Настоящая лачх
- •Лекция 14.
- •Операционный усилитель, охваченный комплексной оос.
- •Интегрирующее звено
- •Переходная функция интегратора
- •Весовая функция интегратора
- •Годограф афчх интегрирующего звена. Звена
- •Лачх и лфчх интегратора.
- •Точность работы такого интегратора увеличивается с ростом частоты. Именно поэтому термин "интегрирующая rCцепочка" имеет смысл.
- •Лекция 15 Реальное дифференцирующее звено. Колебательное звено.
- •Учебный материал
- •Годограф афчх реального дифференцирующего звена.
- •Колебательное звено
- •Годограф афчх инерционного звена. Звена
- •Лачх и лфчх характеристики колебательного звена.
- •Лекция 16.
- •Учебный материал Логарифмические координаты
- •Лекция 17.
- •Учебный материал Амлитудо-фазовые и логарифмические частотные характеристики сау
- •Тема 4. Структурный анализ систем автоматического управления Лекция 18.
- •Учебный материал
- •Метод последовательного логарифмирования
- •Лекция 19
- •Учебный материал
- •Блок имеет множество входов и выходов.
- •Периодическая функция с периодом т.
- •Спектр периодической функции находится в точках 2к/т.
- •Непериодическая функция.
- •Спектр непериодической функции.
- •Логарифмические частотные характеристики
- •Лекция 20 Многомерные сау со многими входами и выходами.
- •Учебный материал
- •Вобщем случае система линейных дифференциальных уравнений имеет следующий вид:
- •Тема 5. Устойчивость систем автоматического управления Лекция 21
- •Учебный материал Устойчивость систем автоматического регулирования
- •Методы определения устойчивости
- •Условие устойчивости
- •Теорема Ляпунова
- •Лекция 22
- •Учебный материал Основные критерии устойчивости:
- •Лекция 23
- •Учебный материал Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерии устойчивости Найквиста
- •Лекция 24
- •Учебный материал Влияние параметров системы на ее устойчивость
- •Лекция 25
- •Учебный материал
- •Лекция 26
- •Учебный материал Понятие запаса устойчивости по амплитуде и фазе.
- •Устойчивость и запасы устойчивости на языке лачх и лфчх.
- •Влияние звена чистого запаздывания на устойчивость. Чистое запаздывание– это часть системы (цепь или блок), при прохождении которой сигнал не меняет своей формы, но задерживается на время .
- •Тема 6. Качество процессов управления Лекция 27
- •Учебный материал Качество процессов управления
- •Лекция 28
- •Учебный материал Степень устойчивости и степень колебательности систем
- •Лекция 29
- •Учебный материал Интегральные оценки качества сар
- •Порядок вычисления интегральных оценок
- •Лекция 30
- •Учебный материал Корневые критерии качества систем автоматического регулирования
- •Степень колебательности.
- •Определение параметров системы (регулятора) по заданной степени колебательности.
- •Метод смещенного уравнения.
- •Построение областей равной степени колебательности в плоскости параметров системы
- •Анализ качества регулирования.
- •Тема 7. Коррекция систем автоматического управления Лекция 31
- •Учебный материал Частотные оценки качества сар
- •Лекция 32
- •Учебный материал Синтез корректирующих устройств
- •Лекция 33
- •Учебный материал Точность сау.
- •Точность по задающему воздействию.
- •Годограф охватывает точку -1.
- •Потеря запаса устойчивости при увеличении коэффициента усиления.
- •Таким образом, увеличение коэффициента усиления разомкнутой системы уменьшает коэффициенты ошибок с0 иС1то есть, в частности, ошибку при ступенчатомUзад(t).
- •Лекция 34
- •Учебный материал Методы повышения точности сау
- •Точность по возмущающему воздействию.
- •Динамическая точность.
- •Лекция 35
- •Учебный материал Случайные процессы в сау. Линейная оптимальная фильтрация.
- •Модели случайных сигналов в сау.
- •Реализация случайного процесса
- •Типичный график корреляционной функции.
- •Регулятор
- •Фильтрация помех.
- •Лекция 36
- •Учебный материал Нелинейные системы автоматического управления
- •Лекция 37
- •Учебный материал Основные виды нелинейностей в сау
- •Лекция 38
- •Учебный материал Релейные элементы-
- •Лекция 39
- •Учебный материал Методы исследования нелинейных систем
- •Лекция 40
- •Учебный материал Характеристики нелинейных систем
- •Метод фазовой плоскости (фазовой траектории)
- •Лекция 41
- •Учебный материал Метод изоклин
- •Метод припасовывания (сшивания).
- •Лекция 42
- •Учебный материал Особые траектории
- •На рис.2 представлена фазовая плоскость хар-ся устойчивым фокусом и неустойчивым предельным циклом.
- •Лекция 43
- •Учебный материал
- •В результате получим следующие значения амплитуды, частоты и периода:
- •Лекция 44
- •Учебный материал Получение кривой переходного процесса по фазовой траектории системы (графический метод)
- •1. Аппроксимируем фаз.Траекторию отрезками прямых 21, 32, 43…
- •Метод гармонического баланса
- •Лекция 45
- •Учебный материал Метод гармонической линеаризации
- •Основное уравнение гармонического баланса
- •Лекция 46
- •Учебный материал Способ Гольдфарба
- •Способ Коченбургера
- •Лекция 47
- •Учебный материал Способ Попова
- •Влияние параметров системы на автоколебания
- •Условие применимости метода гармонического баланса
- •Метод малого параметра
- •Назовите условие применимости метода гармонического баланса
- •Выделение отдельных составляющих движения
- •Лекция 49
- •Учебный материал Основные теоремы метода разделения движений
- •Условия применимости метода
- •Лекция 50
- •Учебный материал Импульсные системы
- •Варианты выходных последовательностей импульсных звеньев
- •Дискретные системы автоматического управления. Типы дискретизации. Структурные схемы импульсных систем
- •Лекция 51
- •Учебный материал Понятие решетчатой и модулированной функций. Дискретное преобразование Лапласа
- •Дифференцирование и интегрирование решетчатых функций
- •Лекция 52
- •Учебный материал Исследование устойчивости системы по разностному уравнению
- •Критерий устойчивости импульсных систем
- •Лекция 53
- •Учебный материал Свойства дискретного преобразования Лапласа
- •Лекция 54
- •Учебный материал Случайные процессы в системах автоматического регулирования.
- •Лекция 55
- •Учебный материал Случайные процессы
- •Лекция 56
- •Учебный материал Стационарные случайные процессы
- •Лекция 57
- •Учебный материал Корреляционная функция
- •Лекция 58
- •Учебный материал Спектральная плотность стационарных процессов
- •Спектральная плотность вычисляется по известной корреляционной функции при помощи формул.
- •Лекция 59
- •Учебный материал Расчеты по минимуму среднеквадратичной ошибки
- •Глоссарий
- •Основная и дополнительная литература
Лекция 33
Цель лекции: изучение путей повышения точности САУ, получение характеристик САУ после проведения мероприятий по повышению точности.
Задачи лекции:
Пути повышения точности САУ.
Изменение характеристик САУ после проведения мероприятий по повышению точности САУ.
Желаемый результат:
Студенты должны знать:
Каким образом повысить точность САУ.
Анализ полученных характеристик САУ после проведения мероприятий по повышению точности САУ.
Учебный материал Точность сау.
Понятие точности является центральным в теории автоматического управления, так как позволяет количественно выразить показатели качества САУ. Показатели точности и качества фигурируют в заданиях на проектирование САУ.
Проще всего рассмотреть понятие точности на примере следящей системы.
Все
понятие о точности заключается в
поведении во времени сигнала ошибки.
f(p)
Uзад(p)
W(p)e(p)
Y(p)
(-)
e(t)=Uзад(t)-Y(t) - динамичная точность.
Точность рассматриваемая в переходном процессе - динамическая точность и точность в установившемся режиме - статическая точность.
Рассмотрим статическую точность eуст=e(). Наиболее эффективным методом изучения статической точности является использование предельной теоремы операторного исчисления.
Необходимо уметь вычислять сигнал ошибки e(t). Для этого наилучшим образом применима передаточная функция по ошибке, позволяющая записать сигнал ошибки при любом виде задающего воздействия:
e(p)=We(p)Uзад(p)+Wef(p)f(p). (50)
Далее будет показано, что практически невозможно обеспечить высокий показатель точности при абсолютно произвольном входном воздействии. Рассмотрим некоторые наиболее практически применимые частные случаи исследования точности САУ.
Точность по задающему воздействию.
Статическая точность при гармоническом входном воздействии.
Самым
простым методом изучения точности
является использование передаточной
функции по ошибке.
-
для следящей системы.
Рассмотрим частотную характеристику системы (т.е. установившуюся реакцию при гармоническом входном воздействии).
Исследование
точности САУ по ЛАЧХ
eдб
0
wдек
н в
Жирной линией показан идеальный случай абсолютно точной системы.
Реальная частотная характеристика отличается от идеальной и в некоторой полосе частот (н , в) не выходит за пределы допуска eдб. Такое же рассуждение справедливо и для ФЧХ. Задав допустимые границы точности по амплитуде и по фазе, получим область частот, где гарантируется данная точность - это полоса пропускания. Задавая требуемую рабочую частоту можно вычислить ошибку на этой частоте при гармоническом воздействии.
Далее рассмотрим общие методы повышения точности как в статическом, так и в динамическом режимах.
Общий способ повышения точности – обеспечение следующих оценок:
-это мера точности воспроизве-
дения задающего воздействия. (51)
-мера малости ошибки слежения.
Можно разными способами можно изменить передаточную функцию Wрс(p) разомкнутой системы, чтобы добиться повышения точности.
увеличение K разомкнутой системы есть один из основных способов повышения точности.
; ; -перед. функция разомкнутой системы.
Коэффициент усиления разомкнутой системы получается при наличии единиц в свободных членах числителя и знаменателя ПФ или так: K=Wpc(0);
Пример
8:
Uзад(p)
2/(p+1)e(p)
Y(p)
(-)
3/(p+2)
В
этом случае K=3=
Wpc(0).
При
увеличенииK
оба приближённых равенства (51) выполняются
всё более точно, что говорит об общем
повышении точности, причём это повышение
точности происходит при любой W*рс(p).
Создаётся обманчивое впечатление, что можно таким образом достичь любой желаемой точности. Однако, здесь начинает сказываться одно из фундаментальных противоречий в рамках ТУ - противоречие между точностью системы и запасом устойчивости.
Убедимся, что при чрезмерном увеличении К возможна потеря устойчивости замкнутой системы. В самом деле, покажем, что годограф Найквиста, не охватывающий точку (-1;j0), но проходящий из 3 квадранта во второй, при увеличении К начинает охватывать эту точку, то есть нарушается условие критерия устойчивости Найквиста. Но это почти очевидно, так как что при увеличении K годограф Найквиста "раздувается" относительно начала координат:
KW*рс(j) = K(ReW*рс(j)+ImW*рс(j)) = KReW*рс(j)+KImW*рс (j).
Очевидно, что повышение точности приводит к уменьшению запаса устойчивости по амплитуде.
ImW(jω)