
- •Лекции по
- •Учебный материал. Введение, основные понятия сау. Понятие об автоматическом управлении
- •Классификация сау
- •Лекция 2. Функциональные элементы систем автоматического управления
- •Учебный материал Классификация функциональных элементов
- •Классификация сигналов, действующих в сау
- •Статические характеристики звеньев сау
- •Дифференциальная чувствительность звеньев
- •Лекция 3. Принципы управления сау
- •Учебный материал Принципы регулирования сау
- •Измерительные и исполнительные устройства
- •Лекция 4. Основные задачи автоматического управления
- •Учебный материал
- •Задачи программного управления.
- •Задачи стабилизации.
- •Лекция 5. Линеаризация уравнений и звеньев сау
- •Учебный материал Положения, лежащие в основе линеаризации.
- •Переход от дифференциального уравнения порядка nк системе изn-дифференциальных уравнений 1-го порядка
- •Геометрическая интерпретация и пример линеаризации.
- •Пример 2. Линеаризация водоема с карасями.
- •Тема 2. Линейные системы автоматического управления Лекция 6.
- •Учебный материал Вывод дифференциальных уравнений звеньев автоматики
- •Лекция 7
- •Учебный материал Передаточные функции звеньев и систем автоматического управления
- •Лекция 8.
- •Учебный материал Типовые динамические звенья автоматики
- •Лекция 9.
- •Учебный материал Передаточные функции сау
- •Лекция 10.
- •Учебный материал. Эквивалентные преобразования структурных схем
- •Основные правила эквивалентного преобразования
- •Лекция 11.
- •Учебный материал Типовые воздействия в автоматике
- •Тема 3. Частотные характеристики звеньев и систем Лекция 12.
- •Учебный материал Частотные характеристики звеньев сау
- •Лекция 13.
- •Учебный материал Порядок нахождения ачх и фчх
- •Годограф афчх инерционного звена. Звена
- •Реализация инерционного звена.
- •Логарифмические частотные характеристики инерционного звена.
- •Настоящая лачх
- •Лекция 14.
- •Операционный усилитель, охваченный комплексной оос.
- •Интегрирующее звено
- •Переходная функция интегратора
- •Весовая функция интегратора
- •Годограф афчх интегрирующего звена. Звена
- •Лачх и лфчх интегратора.
- •Точность работы такого интегратора увеличивается с ростом частоты. Именно поэтому термин "интегрирующая rCцепочка" имеет смысл.
- •Лекция 15 Реальное дифференцирующее звено. Колебательное звено.
- •Учебный материал
- •Годограф афчх реального дифференцирующего звена.
- •Колебательное звено
- •Годограф афчх инерционного звена. Звена
- •Лачх и лфчх характеристики колебательного звена.
- •Лекция 16.
- •Учебный материал Логарифмические координаты
- •Лекция 17.
- •Учебный материал Амлитудо-фазовые и логарифмические частотные характеристики сау
- •Тема 4. Структурный анализ систем автоматического управления Лекция 18.
- •Учебный материал
- •Метод последовательного логарифмирования
- •Лекция 19
- •Учебный материал
- •Блок имеет множество входов и выходов.
- •Периодическая функция с периодом т.
- •Спектр периодической функции находится в точках 2к/т.
- •Непериодическая функция.
- •Спектр непериодической функции.
- •Логарифмические частотные характеристики
- •Лекция 20 Многомерные сау со многими входами и выходами.
- •Учебный материал
- •Вобщем случае система линейных дифференциальных уравнений имеет следующий вид:
- •Тема 5. Устойчивость систем автоматического управления Лекция 21
- •Учебный материал Устойчивость систем автоматического регулирования
- •Методы определения устойчивости
- •Условие устойчивости
- •Теорема Ляпунова
- •Лекция 22
- •Учебный материал Основные критерии устойчивости:
- •Лекция 23
- •Учебный материал Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерии устойчивости Найквиста
- •Лекция 24
- •Учебный материал Влияние параметров системы на ее устойчивость
- •Лекция 25
- •Учебный материал
- •Лекция 26
- •Учебный материал Понятие запаса устойчивости по амплитуде и фазе.
- •Устойчивость и запасы устойчивости на языке лачх и лфчх.
- •Влияние звена чистого запаздывания на устойчивость. Чистое запаздывание– это часть системы (цепь или блок), при прохождении которой сигнал не меняет своей формы, но задерживается на время .
- •Тема 6. Качество процессов управления Лекция 27
- •Учебный материал Качество процессов управления
- •Лекция 28
- •Учебный материал Степень устойчивости и степень колебательности систем
- •Лекция 29
- •Учебный материал Интегральные оценки качества сар
- •Порядок вычисления интегральных оценок
- •Лекция 30
- •Учебный материал Корневые критерии качества систем автоматического регулирования
- •Степень колебательности.
- •Определение параметров системы (регулятора) по заданной степени колебательности.
- •Метод смещенного уравнения.
- •Построение областей равной степени колебательности в плоскости параметров системы
- •Анализ качества регулирования.
- •Тема 7. Коррекция систем автоматического управления Лекция 31
- •Учебный материал Частотные оценки качества сар
- •Лекция 32
- •Учебный материал Синтез корректирующих устройств
- •Лекция 33
- •Учебный материал Точность сау.
- •Точность по задающему воздействию.
- •Годограф охватывает точку -1.
- •Потеря запаса устойчивости при увеличении коэффициента усиления.
- •Таким образом, увеличение коэффициента усиления разомкнутой системы уменьшает коэффициенты ошибок с0 иС1то есть, в частности, ошибку при ступенчатомUзад(t).
- •Лекция 34
- •Учебный материал Методы повышения точности сау
- •Точность по возмущающему воздействию.
- •Динамическая точность.
- •Лекция 35
- •Учебный материал Случайные процессы в сау. Линейная оптимальная фильтрация.
- •Модели случайных сигналов в сау.
- •Реализация случайного процесса
- •Типичный график корреляционной функции.
- •Регулятор
- •Фильтрация помех.
- •Лекция 36
- •Учебный материал Нелинейные системы автоматического управления
- •Лекция 37
- •Учебный материал Основные виды нелинейностей в сау
- •Лекция 38
- •Учебный материал Релейные элементы-
- •Лекция 39
- •Учебный материал Методы исследования нелинейных систем
- •Лекция 40
- •Учебный материал Характеристики нелинейных систем
- •Метод фазовой плоскости (фазовой траектории)
- •Лекция 41
- •Учебный материал Метод изоклин
- •Метод припасовывания (сшивания).
- •Лекция 42
- •Учебный материал Особые траектории
- •На рис.2 представлена фазовая плоскость хар-ся устойчивым фокусом и неустойчивым предельным циклом.
- •Лекция 43
- •Учебный материал
- •В результате получим следующие значения амплитуды, частоты и периода:
- •Лекция 44
- •Учебный материал Получение кривой переходного процесса по фазовой траектории системы (графический метод)
- •1. Аппроксимируем фаз.Траекторию отрезками прямых 21, 32, 43…
- •Метод гармонического баланса
- •Лекция 45
- •Учебный материал Метод гармонической линеаризации
- •Основное уравнение гармонического баланса
- •Лекция 46
- •Учебный материал Способ Гольдфарба
- •Способ Коченбургера
- •Лекция 47
- •Учебный материал Способ Попова
- •Влияние параметров системы на автоколебания
- •Условие применимости метода гармонического баланса
- •Метод малого параметра
- •Назовите условие применимости метода гармонического баланса
- •Выделение отдельных составляющих движения
- •Лекция 49
- •Учебный материал Основные теоремы метода разделения движений
- •Условия применимости метода
- •Лекция 50
- •Учебный материал Импульсные системы
- •Варианты выходных последовательностей импульсных звеньев
- •Дискретные системы автоматического управления. Типы дискретизации. Структурные схемы импульсных систем
- •Лекция 51
- •Учебный материал Понятие решетчатой и модулированной функций. Дискретное преобразование Лапласа
- •Дифференцирование и интегрирование решетчатых функций
- •Лекция 52
- •Учебный материал Исследование устойчивости системы по разностному уравнению
- •Критерий устойчивости импульсных систем
- •Лекция 53
- •Учебный материал Свойства дискретного преобразования Лапласа
- •Лекция 54
- •Учебный материал Случайные процессы в системах автоматического регулирования.
- •Лекция 55
- •Учебный материал Случайные процессы
- •Лекция 56
- •Учебный материал Стационарные случайные процессы
- •Лекция 57
- •Учебный материал Корреляционная функция
- •Лекция 58
- •Учебный материал Спектральная плотность стационарных процессов
- •Спектральная плотность вычисляется по известной корреляционной функции при помощи формул.
- •Лекция 59
- •Учебный материал Расчеты по минимуму среднеквадратичной ошибки
- •Глоссарий
- •Основная и дополнительная литература
Лекция 26
Цель лекции: изучение расчета запаса устойчивости по амплитуде и фазе.
Задачи лекции:
Изучить порядок определения запасов устойчивости по амплитуде и фазе.
Изучить влияние звена чистого запаздывания на запаса устойчивости.
Желаемый результат:
Студенты должны знать:
Порядок определения запасов устойчивости по амплитуде и фазе.
Влияние звена чистого запаздывания на запаса устойчивости.
Учебный материал Понятие запаса устойчивости по амплитуде и фазе.
При выполнении условий критерия Найквиста годограф может при этом не охватывать точку (-1;j0 ) “с запасом”. Оценим этот запас. Рассматривается отдельно запас по амплитуде и по фазе.
А
- запас по амплитуде;
- запас по фазе.
ImW(jω)
А
-1 1 ReW(jω)
ω=0
Запас по амплитуде означает, что при увеличении коэффициента усиления на А система станет неустойчивой.
Аналогично, при появлении дополнительного фазового сдвига система также станет неустойчивой. Разные причины могут влиять на запасы устойчивости. В процессе проектирования гарантируются запасы устойчивости не ниже заданных. Таким образом, запасы устойчивости есть данные на проектирование САУ.
Критерий устойчивости Найквиста может быть сформулирован с помощью логарифмических частотных характеристик, при этом и запасы устойчивости можно также и на языке ЛАЧХ и ФЧХ. При этом определяются Lдб = 20lg(А) и .
Устойчивость и запасы устойчивости на языке лачх и лфчх.
Lдб
ЛАЧХ
1
L
ωдек
0
ФЧХ
-
-
Влияние звена чистого запаздывания на устойчивость. Чистое запаздывание– это часть системы (цепь или блок), при прохождении которой сигнал не меняет своей формы, но задерживается на время .
Типичный пример: локальная сеть без потерь или длинная линия, или транспортная задержка.
Покажем, что такому преобразованию соответствует передаточная функция; для этого вычислим преобразование Лапласа выходного сигнала:
Wзап(p)=e-p; (48)
Таким образом, звену чистого запаздывания соответствует передаточная функция, не являющаяся дробно-рациональной. Она трансцендентная.
Рассмотрим
АФЧХ - частотную характеристику звена
чистого запаздывания:
Im
АЧХ: |Wзап(j)|
= 1;
j ФЧХ: ()= -;
Видим,
что звено чистого запаздывания
добавляет отрицательный фазовый сдвиг,
-1
1
тем больший, чем больше
частота, тем
самым уменьшая запас устойчивости по
фазе. За счет этого сдвига система вполне
вполне может стать неустойчивой.
К сожалению, подобным образом нельзя описать запаздывание, зависящее от времени.
Пример 7: Охватим инерционное звено ООС с запаздыванием на время .
2/(p+1)
U(p)
Y(p)
(-)
e-p
Вычислим для замкнутой системы передаточную функцию и характеристический полином:
(49)
У такого характеристического полинома бесконечное число корней, среди которых могут быть и корни неустойчивые, поэтому численные методы становятся бессмысленными для обоснования устойчивости. Неприменимы критерий Гурвица и необходимое условие устойчивости, а вот частотные критерии устойчивости полностью применимы. Критерий Михайлова и, вытекающий из него критерий Найквиста, позволяют вполне корректно судить об устойчивости таких систем. Найдём АФЧХ разомкнутой системы.
Как
выяснить, при каком значении
система (замкнутая) становится
неустойчивой. Рассмотрим пограничный
случай –
прохождение через (-1;j0) на некоторой частоте *; Будем искать то минимальное значение времени запаздывания, при котором появляется неустойчивость. Подставляем АЧХ и ФЧХ инерционного звена и звена чистого запаздывания и решаем комплексное уравнение относительно * и . Для этого приравняем по отдельности модуль и аргумент. Для модуля имеется следующее равенство:
Для равенства аргументов требуется, чтобы sin(arctg*-*)=0; Отсюда вытекает, что arctg*- * = .
Поэтому
для
получаем:
Это значение есть то минимальное запаздывание в нашей системе, при котором замкнутая система уже становится неустойчивой. Заметим, что звено запаздывания может располагаться и в прямой ветви, в данном случае все расчёты сохраняются.
Вопросы самоконтроля:
Представьте порядок определения запасов устойчивости по амплитуде и фазе.
Каково влияние звена чистого запаздывания на запаса устойчивости.
Список литературы по теме лекции:
Бесекерский В.А., Попов Е.П. Теория CAP, М.,2005
Иващенко Н.Н. Автоматическое регулирование, М.,2003