
- •Лекции по
- •Учебный материал. Введение, основные понятия сау. Понятие об автоматическом управлении
- •Классификация сау
- •Лекция 2. Функциональные элементы систем автоматического управления
- •Учебный материал Классификация функциональных элементов
- •Классификация сигналов, действующих в сау
- •Статические характеристики звеньев сау
- •Дифференциальная чувствительность звеньев
- •Лекция 3. Принципы управления сау
- •Учебный материал Принципы регулирования сау
- •Измерительные и исполнительные устройства
- •Лекция 4. Основные задачи автоматического управления
- •Учебный материал
- •Задачи программного управления.
- •Задачи стабилизации.
- •Лекция 5. Линеаризация уравнений и звеньев сау
- •Учебный материал Положения, лежащие в основе линеаризации.
- •Переход от дифференциального уравнения порядка nк системе изn-дифференциальных уравнений 1-го порядка
- •Геометрическая интерпретация и пример линеаризации.
- •Пример 2. Линеаризация водоема с карасями.
- •Тема 2. Линейные системы автоматического управления Лекция 6.
- •Учебный материал Вывод дифференциальных уравнений звеньев автоматики
- •Лекция 7
- •Учебный материал Передаточные функции звеньев и систем автоматического управления
- •Лекция 8.
- •Учебный материал Типовые динамические звенья автоматики
- •Лекция 9.
- •Учебный материал Передаточные функции сау
- •Лекция 10.
- •Учебный материал. Эквивалентные преобразования структурных схем
- •Основные правила эквивалентного преобразования
- •Лекция 11.
- •Учебный материал Типовые воздействия в автоматике
- •Тема 3. Частотные характеристики звеньев и систем Лекция 12.
- •Учебный материал Частотные характеристики звеньев сау
- •Лекция 13.
- •Учебный материал Порядок нахождения ачх и фчх
- •Годограф афчх инерционного звена. Звена
- •Реализация инерционного звена.
- •Логарифмические частотные характеристики инерционного звена.
- •Настоящая лачх
- •Лекция 14.
- •Операционный усилитель, охваченный комплексной оос.
- •Интегрирующее звено
- •Переходная функция интегратора
- •Весовая функция интегратора
- •Годограф афчх интегрирующего звена. Звена
- •Лачх и лфчх интегратора.
- •Точность работы такого интегратора увеличивается с ростом частоты. Именно поэтому термин "интегрирующая rCцепочка" имеет смысл.
- •Лекция 15 Реальное дифференцирующее звено. Колебательное звено.
- •Учебный материал
- •Годограф афчх реального дифференцирующего звена.
- •Колебательное звено
- •Годограф афчх инерционного звена. Звена
- •Лачх и лфчх характеристики колебательного звена.
- •Лекция 16.
- •Учебный материал Логарифмические координаты
- •Лекция 17.
- •Учебный материал Амлитудо-фазовые и логарифмические частотные характеристики сау
- •Тема 4. Структурный анализ систем автоматического управления Лекция 18.
- •Учебный материал
- •Метод последовательного логарифмирования
- •Лекция 19
- •Учебный материал
- •Блок имеет множество входов и выходов.
- •Периодическая функция с периодом т.
- •Спектр периодической функции находится в точках 2к/т.
- •Непериодическая функция.
- •Спектр непериодической функции.
- •Логарифмические частотные характеристики
- •Лекция 20 Многомерные сау со многими входами и выходами.
- •Учебный материал
- •Вобщем случае система линейных дифференциальных уравнений имеет следующий вид:
- •Тема 5. Устойчивость систем автоматического управления Лекция 21
- •Учебный материал Устойчивость систем автоматического регулирования
- •Методы определения устойчивости
- •Условие устойчивости
- •Теорема Ляпунова
- •Лекция 22
- •Учебный материал Основные критерии устойчивости:
- •Лекция 23
- •Учебный материал Частотные критерии устойчивости
- •Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерии устойчивости Найквиста
- •Лекция 24
- •Учебный материал Влияние параметров системы на ее устойчивость
- •Лекция 25
- •Учебный материал
- •Лекция 26
- •Учебный материал Понятие запаса устойчивости по амплитуде и фазе.
- •Устойчивость и запасы устойчивости на языке лачх и лфчх.
- •Влияние звена чистого запаздывания на устойчивость. Чистое запаздывание– это часть системы (цепь или блок), при прохождении которой сигнал не меняет своей формы, но задерживается на время .
- •Тема 6. Качество процессов управления Лекция 27
- •Учебный материал Качество процессов управления
- •Лекция 28
- •Учебный материал Степень устойчивости и степень колебательности систем
- •Лекция 29
- •Учебный материал Интегральные оценки качества сар
- •Порядок вычисления интегральных оценок
- •Лекция 30
- •Учебный материал Корневые критерии качества систем автоматического регулирования
- •Степень колебательности.
- •Определение параметров системы (регулятора) по заданной степени колебательности.
- •Метод смещенного уравнения.
- •Построение областей равной степени колебательности в плоскости параметров системы
- •Анализ качества регулирования.
- •Тема 7. Коррекция систем автоматического управления Лекция 31
- •Учебный материал Частотные оценки качества сар
- •Лекция 32
- •Учебный материал Синтез корректирующих устройств
- •Лекция 33
- •Учебный материал Точность сау.
- •Точность по задающему воздействию.
- •Годограф охватывает точку -1.
- •Потеря запаса устойчивости при увеличении коэффициента усиления.
- •Таким образом, увеличение коэффициента усиления разомкнутой системы уменьшает коэффициенты ошибок с0 иС1то есть, в частности, ошибку при ступенчатомUзад(t).
- •Лекция 34
- •Учебный материал Методы повышения точности сау
- •Точность по возмущающему воздействию.
- •Динамическая точность.
- •Лекция 35
- •Учебный материал Случайные процессы в сау. Линейная оптимальная фильтрация.
- •Модели случайных сигналов в сау.
- •Реализация случайного процесса
- •Типичный график корреляционной функции.
- •Регулятор
- •Фильтрация помех.
- •Лекция 36
- •Учебный материал Нелинейные системы автоматического управления
- •Лекция 37
- •Учебный материал Основные виды нелинейностей в сау
- •Лекция 38
- •Учебный материал Релейные элементы-
- •Лекция 39
- •Учебный материал Методы исследования нелинейных систем
- •Лекция 40
- •Учебный материал Характеристики нелинейных систем
- •Метод фазовой плоскости (фазовой траектории)
- •Лекция 41
- •Учебный материал Метод изоклин
- •Метод припасовывания (сшивания).
- •Лекция 42
- •Учебный материал Особые траектории
- •На рис.2 представлена фазовая плоскость хар-ся устойчивым фокусом и неустойчивым предельным циклом.
- •Лекция 43
- •Учебный материал
- •В результате получим следующие значения амплитуды, частоты и периода:
- •Лекция 44
- •Учебный материал Получение кривой переходного процесса по фазовой траектории системы (графический метод)
- •1. Аппроксимируем фаз.Траекторию отрезками прямых 21, 32, 43…
- •Метод гармонического баланса
- •Лекция 45
- •Учебный материал Метод гармонической линеаризации
- •Основное уравнение гармонического баланса
- •Лекция 46
- •Учебный материал Способ Гольдфарба
- •Способ Коченбургера
- •Лекция 47
- •Учебный материал Способ Попова
- •Влияние параметров системы на автоколебания
- •Условие применимости метода гармонического баланса
- •Метод малого параметра
- •Назовите условие применимости метода гармонического баланса
- •Выделение отдельных составляющих движения
- •Лекция 49
- •Учебный материал Основные теоремы метода разделения движений
- •Условия применимости метода
- •Лекция 50
- •Учебный материал Импульсные системы
- •Варианты выходных последовательностей импульсных звеньев
- •Дискретные системы автоматического управления. Типы дискретизации. Структурные схемы импульсных систем
- •Лекция 51
- •Учебный материал Понятие решетчатой и модулированной функций. Дискретное преобразование Лапласа
- •Дифференцирование и интегрирование решетчатых функций
- •Лекция 52
- •Учебный материал Исследование устойчивости системы по разностному уравнению
- •Критерий устойчивости импульсных систем
- •Лекция 53
- •Учебный материал Свойства дискретного преобразования Лапласа
- •Лекция 54
- •Учебный материал Случайные процессы в системах автоматического регулирования.
- •Лекция 55
- •Учебный материал Случайные процессы
- •Лекция 56
- •Учебный материал Стационарные случайные процессы
- •Лекция 57
- •Учебный материал Корреляционная функция
- •Лекция 58
- •Учебный материал Спектральная плотность стационарных процессов
- •Спектральная плотность вычисляется по известной корреляционной функции при помощи формул.
- •Лекция 59
- •Учебный материал Расчеты по минимуму среднеквадратичной ошибки
- •Глоссарий
- •Основная и дополнительная литература
Непериодическая функция.
Спектр непериодической функции.
x(t)
|aK|
0 t 0
Для непериодической функции спектр становится непрерывным.
При устремлении периода в бесконечность, ряд Фурье переходит в интеграл Фурье, а коэффициенты Фурье переходят в преобразование Фурье по следующей формуле:
(21)
Интеграл Фурье следует понимать, как разложение Фурье x(t) по непрерывным частотам.
Теперь, наконец, покажем, что имеется важнейшая связь между непрерывным спектром (преобразованием Фурье) и преобразованием Лапласа, лежащая в основе известной подстановки p=j. В самом деле, так как x(t)0 при t < 0 (функия является оригиналом для преобразования Лапласа), то:
(22)
Вывод: Подстановка p=j в изображение по Лапласу произвольной функции (оригинала) превращает преобразование Лапласа в спектр или, что есть то же самое, в преобразование Фурье. Поэтому от передаточной функции переходим к спектрам входного и выходного сигналов.
Y(p)=W(p)U(p) при подстановке p=j:
Y(j)=W(j)U(j) ; (23)
W(j) явно описывает изменение спектра при прохождении через блок с передаточной функцией W(p). Формула (23) справедлива для любого входного сигнала. Но, так как произвольный сигнал модет быть разложен по гармоническим составляющим (в ряд или интеграл Фурье, в зависимости от периодичности), особенно важно знать, как преобразуется простейший гармонический сигнал при прохождении через блок с ПФ W(p). Известно, что при поступлении на вход линейного блока с любой передаточной функцией гармонического сигнала после окончания переходного процесса на выходе устанавливается гармонический сигнал той же частоты. Конечно, требуется, чтобы переходный процесс заканчивался, то есть, чтобы решение однородного уравнения в формуле (24) стремилось к 0.
(24)
Из (24) следует, что при подаче на вход блока простого гармонического сигнала u(t)=sin t, выходной сигнал в установившемся режиме будет гармоническим с изменившимися амплитудой и фазой. Воспользуемся комплексным методом для определения амплитуды и фазы y(t). u(t)=Im(ejt); y(t)= L-1{ W(p)L{Im(ejt)}; Но оператор Лапласа и его обратный переставимы с операцией взятия Im-мнимой части. Поэтому: y(t)=Im(L-1{ W(p)L{ejt}); Соответственно: Y(p)=Im(W(p)L{ejt});
Сделаем подстановку p=j: Y(j)=A()L{ej(t+())}=Im(W(j)L{e-jt}); A()L{ej(t+())}=A()ej() L{ ejt }; Теперь можно вычислить АФЧХ:
W(j) = Y(j)/U(j)= A()ej() ejt / e jt = A()ej() - АФЧХ;
W(j) = |W(j)| ei arg W(j)=|W(j)| ei(); (25)
Где: |W(j)| - АЧХ - Амплитудно–частотная характеристика;
()=arg W(j) - ФЧХ - Фазочастотная характеристика.
ImW(j)
Частотные характеристики показывают
амплитуду и фазу установившегося
ReW(j)
гармонического
сигнала на выходе при
поступлении на вход
гармонического
() =0 сигнала единичной амплитуды.
A() АФЧХ удобно изображать в виде
годографа (греч. hodos - путь + "граф")
*
на
комплексной плоскости с координатами
ReW()
и ImW().
Параметром на кривой годографа является частота, изменяющаяся в интервале от 0 до . Для произвольной частоты * радиус вектор в точке W(*) показывает амплитуду выходного сигнала, а угол (*) - сдвиг фазы между выходным и входным сигналом. Иногда ещё W(j) называют комплексным коэффициентом передачи, подразумевая, что АФЧХ является обобщением обычного коэффициента усиления К на случай его зависимости от частоты и имеющийся фазовый сдвиг, также зависящий от частоты.
В инженерной практике иногда используются (однако, гораздо реже) графики отдельно АЧХ и ФЧХ (25). В этом случае проще проследить конкретную зависимость от частоты, так как частота является координатой этих графиков. Но чаще всего используют логарифмические частотные характеристики (ЛЧХ), то есть графики ЛАЧХ и ФЧХ в логарифмических координатах. Удобство их применения станет понятным далее.
ЛАЧХ: L() (дб) = 20lg|W(j)|
ФЧХ: () = arg W(j) (26)