
- •Передмова
- •АРИФМЕТИКА
- •Натуральні числа і дії над ними
- •Дії над натуральними числами
- •Числові та буквені вирази
- •Формули
- •Рівняння
- •Звичайні дроби
- •Порівняння звичайних дробів
- •Додавання і віднімання дробів з однаковими знаменниками
- •Додавання і віднімання мішаних чисел з однаковими знаменниками
- •Десяткові дроби
- •Властивості десяткового дробу
- •Дії з десятковими дробами
- •Порівняння та округлення натуральних чисел і десяткових дробів
- •Порівняння
- •Округлення
- •Перетворення звичайного дробу на десятковий і навпаки
- •Середнє арифметичне
- •Відсотки
- •Масштаб
- •Діаграми
- •Числовий промінь
- •Подільність натуральних чисел
- •Дільники і кратні
- •Прості й складені числа
- •Степінь
- •Розкладання числа на прості множники
- •Найменше спільне кратне (НСК)
- •Дії над звичайними дробами
- •Основна властивість дробу
- •Зведення дробів до спільного знаменника
- •Порівняння, додавання та віднімання дробів
- •Перетворення звичайних дробів на десяткові
- •Множення звичайних дробів
- •Взаємно обернені числа
- •Ділення звичайних дробів
- •Основна властивість пропорції
- •Пряма та обернена пропорційність
- •Приклади розв’язування типових завдань
- •Рівняння
- •Задачі на дроби
- •Задачі на рух
- •Комбінаторні задачі
- •Задачі на знаходження частини від числа
- •Задачі на пряму та обернену пропорційність
- •Задачі на пропорційне ділення
- •Задачі на відсотки
- •Задачі на спільну роботу
- •Розв’язування задач за допомогою рівнянь
- •АЛГЕБРА ТА ЕЛЕМЕНТАРНІ ФУНКЦІЇ
- •Дійсні числа
- •Додатні та від’ємні числа
- •Множини чисел
- •Модуль числа
- •Порівняння чисел
- •Дії над дійсними числами
- •Вирази
- •Одночлени
- •Степінь з натуральним показником
- •Одночлен і його стандартний вигляд
- •Многочлени
- •Множення одночлена на многочлен
- •Множення многочлена на многочлен
- •Розкладання многочленів на множники
- •Формули скороченого множення
- •Застосування кількох способів для розкладання многочленів на множники
- •Раціональні вирази
- •Основна властивість дробу. Скорочення дробів
- •Додавання та віднімання дробів
- •Множення, ділення й піднесення до степеня дробів
- •Перетворення раціональних виразів
- •Корені. Ірраціональні вирази
- •Квадратний корень
- •Кoрінь n-го степеня та його властивості
- •Найпростіші перетворення радикалів
- •Узагальнення поняття степеня
- •Основнi означення
- •Властивості степеня з раціональним показником
- •Поняття степеня з ірраціональним показником
- •Логарифм числа
- •Властивості логарифмів
- •Модуль і його властивості
- •Властивості модуля
- •Функції та графіки
- •Лінійна функція
- •Обернена пропорційність
- •Функція y=x2
- •Властивості функцій
- •Перетворення графіків функцій
- •Квадратична функція
- •Екстремуми функції
- •Степенева функція
- •Показникова функція
- •Логарифмічна функція
- •Тригонометричні функції
- •Радіанна система вимірювання кутів і дуг
- •Тригонометричні функції числового аргументу
- •Знаки тригонометричних функцій
- •Періодичність тригонометричних функцій
- •Графіки тригонометричних функцій
- •Властивості тригонометричних функцій
- •Поняття про обернену функцію
- •Рівняння
- •Основні властивості рівнянь
- •Лінійні рівняння з одним невідомим
- •Розв’язування задач за допомогою рівнянь
- •Дробові раціональні рівняння
- •Квадратні рівняння
- •Рівняння, що зводяться до квадратних
- •Розв’язування найпростіших тригонометричних рівнянь
- •Деякі способи розв’язування тригонометричних рівнянь
- •Ірраціональні рівняння
- •Розв’язування логарифмічних рівнянь
- •Розв’язування рівнянь графічним способом
- •Системи рівнянь
- •Лінійне рівняння з двома невідомими
- •Системи лінійних рівнянь з двома невідомими
- •Розв’язування систем рівнянь другого степеня
- •Приклади розв’язування систем тригонометричних рівнянь
- •Нерівності
- •Властивості числових нерівностей
- •НерівностІ з однією змінною
- •Числові проміжки
- •Властивості нерівностей зі змінними
- •Нерівність між середнім арифметичним та середнім геометричним
- •Розв’язування квадратних нерівностей за допомогою графіків
- •Розв’язування найпростіших тригонометричних нерівностей
- •Розв’язування показникових нерівностей
- •Логарифмічні нерівності
- •Системи нерівностей з однією змінною
- •ЕЛЕМЕНТИ МАТЕМАТИЧНОГО АНАЛІЗУ
- •Послідовності
- •Арифметична прогресія
- •Геометрична прогресія
- •Границя
- •Границя числової послідовності
- •Властивості нескінченно малих послідовностей
- •Основні теореми про границі числової послідовності
- •Границя функції
- •Основні теореми про границі функцій
- •Неперервність функції в точці
- •Основні властивості неперервних функцій
- •Метод інтервалів
- •Похідні елементарних функцій
- •Застосування похідної
- •Інтеграл і його застосування
- •Поняття первісної функції
- •Правила знаходження первісних
- •Таблиця первісних
- •Інтеграл
- •КОМБІНАТОРИКА. ПОЧАТКИ ТЕОРІЇ ЙМОВІРНОСТЕЙ. МАТЕМАТИЧНА СТАТИСТИКА
- •Елементи комбінаторики
- •Початки теорії ймовірностей
- •Основні поняття теорії ймовірностей
- •Вступ до статистики
- •Основні властивості найпростіших геометричних фігур
- •Суміжні й вертикальні кути
- •Властивості суміжних кутів
- •Властивості вертикальних кутів
- •Перпендикуляр
- •Паралельні прямі
- •Бісектриса
- •Висота, бісектриса, медіана трикутника
- •Рівнобедрений трикутник
- •Рівносторонній трикутник
- •Ознаки рівнобедреного трикутника
- •Сума кутів трикутника
- •Прямокутний трикутник
- •Коло
- •Геометричне місце точок
- •Пряма й обернена теореми
- •Доведення від супротивного
- •Приклади розв’язування типових задач
- •Чотирикутники
- •Паралелограм
- •Прямокутник
- •Ромб
- •Квадрат
- •Трапеція
- •Теорема Фалеса
- •Трикутники
- •Середня лінія трикутника
- •Теорема Піфагора
- •Перпендикуляр і похила
- •Нерівність трикутника
- •Співвідношення між сторонами й кутами прямокутного трикутника
- •Властивості руху
- •Симетрія відносно точки
- •Симетрія відносно прямої
- •Поворот
- •Паралельне перенесення та його властивості
- •Співнаправленість півпрямих
- •Властивості перетворення подібності
- •Властивості подібних фігур
- •Кути, пов’язані з колом
- •Кути, вписані в коло
- •Пропорційність відрізків хорд і січних кола
- •Вписані й описані чотирикутники
- •Розв’язування трикутників
- •Теорема косинусів
- •Теорема синусів
- •Розв’язування трикутників
- •Правильні многокутники
- •Довжина кола
- •Площі фігур
- •Площа паралелограма
- •Площа прямокутника
- •Площа ромба
- •Площа квадрата
- •Площа трикутника
- •Площа трапеції
- •Площа чотирикутника
- •Площа круга
- •Площі подібних фігур
- •Аксіоми стереометрії
- •Паралельність прямих і площини
- •Ознака паралельності прямих
- •Ознака паралельності прямої і площини
- •Ознака паралельності площин
- •Властивості паралельних площин
- •Зображення просторових фігур на площині
- •Перпендикулярність прямих і площин
- •Перпендикуляр і похила
- •Теорема про три перпендикуляри
- •Перпендикулярність площин
- •Відстань між мимобіжними прямими
- •Кут між мимобіжними прямими
- •Кут між прямою та площиною
- •Кут між площинами
- •Многогранники
- •Двогранний кут
- •Тригранний і многогранний кути
- •Многогранники
- •Тіла обертання
- •Конус
- •Зрізаний конус
- •Куля
- •Комбінації геометричних тіл
- •Циліндр, вписаний у кулю
- •Циліндр, описаний навколо кулі
- •Конус, вписаний у кулю
- •Куля, вписана в конус
- •Інші комбінації геометричних тіл
- •Описані кулі
- •Вписані кулі
- •Декартові координати на площині
- •Координатна площина
- •Координати середини відрізка
- •Відстань між точками
- •Рівняння кола
- •Рівняння прямої
- •Означення синуса, косинуса, тангенса, котангенса для будь-якого кута від 0° до 180°
- •Вектори на площині
- •Координати векторa
- •Додавання векторів
- •Множення вектора на число
- •Скалярний добуток векторів
- •Розкладання вектора за координатними осями
- •Декартові координати в просторі
- •Перетворення в просторі
- •Подібність просторових фігур
- •Вектори в просторі
- •Предметний покажчик

планіметрія. Основні властивості найпростіших геометричних фігур
Суміжні й вертикальні кути
Два кути називаються с у м і ж н и м и, якщо в них одна сторона спільна, а інші сторони є доповняльними півпря мими.
На рисунку AOC і BOC — суміжні.
C
A O B
Властивості суміжних кутів
Теорема 1. Сума суміжних кутів дорівнює 180°. (Зверніть увагу: кути, сума яких дорівнює 180°, не обов’яз ково суміжні.)
Теорема 2. Коли два кути рівні, то суміжні з ними кути теж рівні.
Теорема 3. Кут, суміжний із прямим кутом, є прямий
кут.
Теорема 4. Кут, суміжний із гострим кутом, — тупий. Теорема 5. Кут, суміжний із тупим кутом, — гострий. Два кути називаються в е р т и к а л ьн и м и, якщо сторони одного кута є доповняльними півпрямими сторін дру-
гого.
На рисунку AOC і DOB, а також AOB і COD — вертикальні:
B
A
O
D
C
215

Геометрія
Властивості вертикальних кутів
Теорема 1. Вертикальні кути рівні. (Але не всі рівні кути вертикальні.)
Теорема 2. Кути, вертикальні рівним, рівні .
Якщо дві прямі перетинаються, то вони утворюють чотири нерозгорнутих кути (див. рисунок). Кожні два із цих кутів або суміжні, або вертикальні:
3
2 1
4
1 і 2; 3 і 4 — вертикальні;1 і 3; 1 і 4; 2 і 3; 2 і 4 — суміжні.
Перпендикуляр
Дві прямі називаються перпендикулярними, якщо вони перетинаються під прямим кутом (див. рисунок), тобто, коли вони перетинаються, утворюються чотири прямих кути.
Позначення: a b.
a
b
Теорема 1. Через кожну точку прямої можна провести перпендикулярну до неї пряму, і до того ж тільки одну.
П е р п е н д и к у л я р о м д о д а н о ї п р я м о ї назива-
ється відрізок прямої, перпендикулярної до даної прямої, який має одним зі своїх кінців точку їх перетину.
216

планіметрія. Основні властивості найпростіших геометричних фігур
На рисунку AB — перпендикуляр, проведений із точки A до прямої a. Точка B називається о с н о в о ю п е р п е н д и к у л я р а.
Позначення: AB a.
A
a
B |
Теорема 2. Із будь-якої точки, що не лежить на даній прямій, можна опустити на цю пряму перпендикуляр, і тільки один.
Зверніть увагу: теорема містить два твердження — існування перпендикуляра і його єдиність.
Паралельні прямі
На рисунку зображені кути, утворені в результаті перетину двох прямих січною:
c
a |
|
3 |
2 |
|
|
||
|
|
|
|
|
1 |
|
4 |
|
|
|
76
b |
|
5 |
8 |
1 і 6; 4 і 7 — внутрішні різносторонні кути при прямих a, b і січній c.
1 і 7; 4 і 6 — внутрішні односторонні.2 і 8; 3 і 5 — зовнішні односторонні.
217

Геометрія
2 і 5; 3 і 8 — зовнішні різносторонні.
1 і 5; 3 і 7; 2 і 6; 4 і 8 — відповідні.
Властивості паралельних прямих
Теорема 1. Якщо дві паралельні прямі перетнуті третьою прямою, то:
1)внутрішні різносторонні кути рівні;
2)сума внутрішніх односторонніх кутів дорівнює 180°;
3)зовнішні різносторонні кути рівні;
4)сума зовнішніх односторонніх кутів дорівнює 180°;
5)відповідні кути рівні.
На рисунку позначені числами чотири пари кутів.
Теорема стверджує, що, |
якщо |
a b, то 1=6, 4 = 7, |
||
1+7 = 180° ; 3 =8, 2 = 5; 3+5 = 180°; 7 =3: |
||||
|
|
|
c |
|
a |
|
|
3 |
2 |
|
|
|
|
|
|
|
1 |
4 |
|
b |
7 |
|
6 |
|
|
|
|
|
|
|
5 |
|
8 |
|
Теорема 2. Якщо пряма перпендикулярна до однієї з паралельних прямих, то вона перпендикулярна і до другої.
Теорема 3. Через точку, що не лежить на прямій, можна провести пряму, паралельну даній.
Об’єднуючи це твердження з аксіомою IX, отримуємо: через точку, що не лежить на прямій, можна провести пряму, паралельну даній, причому тільки одну.
Ознаки паралельності прямих
Теорема 1. Якщо при перетині двох прямих третьою виконується хоча б одна з таких умов:
218