- •Передмова
- •АРИФМЕТИКА
- •Натуральні числа і дії над ними
- •Дії над натуральними числами
- •Числові та буквені вирази
- •Формули
- •Рівняння
- •Звичайні дроби
- •Порівняння звичайних дробів
- •Додавання і віднімання дробів з однаковими знаменниками
- •Додавання і віднімання мішаних чисел з однаковими знаменниками
- •Десяткові дроби
- •Властивості десяткового дробу
- •Дії з десятковими дробами
- •Порівняння та округлення натуральних чисел і десяткових дробів
- •Порівняння
- •Округлення
- •Перетворення звичайного дробу на десятковий і навпаки
- •Середнє арифметичне
- •Відсотки
- •Масштаб
- •Діаграми
- •Числовий промінь
- •Подільність натуральних чисел
- •Дільники і кратні
- •Прості й складені числа
- •Степінь
- •Розкладання числа на прості множники
- •Найменше спільне кратне (НСК)
- •Дії над звичайними дробами
- •Основна властивість дробу
- •Зведення дробів до спільного знаменника
- •Порівняння, додавання та віднімання дробів
- •Перетворення звичайних дробів на десяткові
- •Множення звичайних дробів
- •Взаємно обернені числа
- •Ділення звичайних дробів
- •Основна властивість пропорції
- •Пряма та обернена пропорційність
- •Приклади розв’язування типових завдань
- •Рівняння
- •Задачі на дроби
- •Задачі на рух
- •Комбінаторні задачі
- •Задачі на знаходження частини від числа
- •Задачі на пряму та обернену пропорційність
- •Задачі на пропорційне ділення
- •Задачі на відсотки
- •Задачі на спільну роботу
- •Розв’язування задач за допомогою рівнянь
- •АЛГЕБРА ТА ЕЛЕМЕНТАРНІ ФУНКЦІЇ
- •Дійсні числа
- •Додатні та від’ємні числа
- •Множини чисел
- •Модуль числа
- •Порівняння чисел
- •Дії над дійсними числами
- •Вирази
- •Одночлени
- •Степінь з натуральним показником
- •Одночлен і його стандартний вигляд
- •Многочлени
- •Множення одночлена на многочлен
- •Множення многочлена на многочлен
- •Розкладання многочленів на множники
- •Формули скороченого множення
- •Застосування кількох способів для розкладання многочленів на множники
- •Раціональні вирази
- •Основна властивість дробу. Скорочення дробів
- •Додавання та віднімання дробів
- •Множення, ділення й піднесення до степеня дробів
- •Перетворення раціональних виразів
- •Корені. Ірраціональні вирази
- •Квадратний корень
- •Кoрінь n-го степеня та його властивості
- •Найпростіші перетворення радикалів
- •Узагальнення поняття степеня
- •Основнi означення
- •Властивості степеня з раціональним показником
- •Поняття степеня з ірраціональним показником
- •Логарифм числа
- •Властивості логарифмів
- •Модуль і його властивості
- •Властивості модуля
- •Функції та графіки
- •Лінійна функція
- •Обернена пропорційність
- •Функція y=x2
- •Властивості функцій
- •Перетворення графіків функцій
- •Квадратична функція
- •Екстремуми функції
- •Степенева функція
- •Показникова функція
- •Логарифмічна функція
- •Тригонометричні функції
- •Радіанна система вимірювання кутів і дуг
- •Тригонометричні функції числового аргументу
- •Знаки тригонометричних функцій
- •Періодичність тригонометричних функцій
- •Графіки тригонометричних функцій
- •Властивості тригонометричних функцій
- •Поняття про обернену функцію
- •Рівняння
- •Основні властивості рівнянь
- •Лінійні рівняння з одним невідомим
- •Розв’язування задач за допомогою рівнянь
- •Дробові раціональні рівняння
- •Квадратні рівняння
- •Рівняння, що зводяться до квадратних
- •Розв’язування найпростіших тригонометричних рівнянь
- •Деякі способи розв’язування тригонометричних рівнянь
- •Ірраціональні рівняння
- •Розв’язування логарифмічних рівнянь
- •Розв’язування рівнянь графічним способом
- •Системи рівнянь
- •Лінійне рівняння з двома невідомими
- •Системи лінійних рівнянь з двома невідомими
- •Розв’язування систем рівнянь другого степеня
- •Приклади розв’язування систем тригонометричних рівнянь
- •Нерівності
- •Властивості числових нерівностей
- •НерівностІ з однією змінною
- •Числові проміжки
- •Властивості нерівностей зі змінними
- •Нерівність між середнім арифметичним та середнім геометричним
- •Розв’язування квадратних нерівностей за допомогою графіків
- •Розв’язування найпростіших тригонометричних нерівностей
- •Розв’язування показникових нерівностей
- •Логарифмічні нерівності
- •Системи нерівностей з однією змінною
- •ЕЛЕМЕНТИ МАТЕМАТИЧНОГО АНАЛІЗУ
- •Послідовності
- •Арифметична прогресія
- •Геометрична прогресія
- •Границя
- •Границя числової послідовності
- •Властивості нескінченно малих послідовностей
- •Основні теореми про границі числової послідовності
- •Границя функції
- •Основні теореми про границі функцій
- •Неперервність функції в точці
- •Основні властивості неперервних функцій
- •Метод інтервалів
- •Похідні елементарних функцій
- •Застосування похідної
- •Інтеграл і його застосування
- •Поняття первісної функції
- •Правила знаходження первісних
- •Таблиця первісних
- •Інтеграл
- •КОМБІНАТОРИКА. ПОЧАТКИ ТЕОРІЇ ЙМОВІРНОСТЕЙ. МАТЕМАТИЧНА СТАТИСТИКА
- •Елементи комбінаторики
- •Початки теорії ймовірностей
- •Основні поняття теорії ймовірностей
- •Вступ до статистики
- •Основні властивості найпростіших геометричних фігур
- •Суміжні й вертикальні кути
- •Властивості суміжних кутів
- •Властивості вертикальних кутів
- •Перпендикуляр
- •Паралельні прямі
- •Бісектриса
- •Висота, бісектриса, медіана трикутника
- •Рівнобедрений трикутник
- •Рівносторонній трикутник
- •Ознаки рівнобедреного трикутника
- •Сума кутів трикутника
- •Прямокутний трикутник
- •Коло
- •Геометричне місце точок
- •Пряма й обернена теореми
- •Доведення від супротивного
- •Приклади розв’язування типових задач
- •Чотирикутники
- •Паралелограм
- •Прямокутник
- •Ромб
- •Квадрат
- •Трапеція
- •Теорема Фалеса
- •Трикутники
- •Середня лінія трикутника
- •Теорема Піфагора
- •Перпендикуляр і похила
- •Нерівність трикутника
- •Співвідношення між сторонами й кутами прямокутного трикутника
- •Властивості руху
- •Симетрія відносно точки
- •Симетрія відносно прямої
- •Поворот
- •Паралельне перенесення та його властивості
- •Співнаправленість півпрямих
- •Властивості перетворення подібності
- •Властивості подібних фігур
- •Кути, пов’язані з колом
- •Кути, вписані в коло
- •Пропорційність відрізків хорд і січних кола
- •Вписані й описані чотирикутники
- •Розв’язування трикутників
- •Теорема косинусів
- •Теорема синусів
- •Розв’язування трикутників
- •Правильні многокутники
- •Довжина кола
- •Площі фігур
- •Площа паралелограма
- •Площа прямокутника
- •Площа ромба
- •Площа квадрата
- •Площа трикутника
- •Площа трапеції
- •Площа чотирикутника
- •Площа круга
- •Площі подібних фігур
- •Аксіоми стереометрії
- •Паралельність прямих і площини
- •Ознака паралельності прямих
- •Ознака паралельності прямої і площини
- •Ознака паралельності площин
- •Властивості паралельних площин
- •Зображення просторових фігур на площині
- •Перпендикулярність прямих і площин
- •Перпендикуляр і похила
- •Теорема про три перпендикуляри
- •Перпендикулярність площин
- •Відстань між мимобіжними прямими
- •Кут між мимобіжними прямими
- •Кут між прямою та площиною
- •Кут між площинами
- •Многогранники
- •Двогранний кут
- •Тригранний і многогранний кути
- •Многогранники
- •Тіла обертання
- •Конус
- •Зрізаний конус
- •Куля
- •Комбінації геометричних тіл
- •Циліндр, вписаний у кулю
- •Циліндр, описаний навколо кулі
- •Конус, вписаний у кулю
- •Куля, вписана в конус
- •Інші комбінації геометричних тіл
- •Описані кулі
- •Вписані кулі
- •Декартові координати на площині
- •Координатна площина
- •Координати середини відрізка
- •Відстань між точками
- •Рівняння кола
- •Рівняння прямої
- •Означення синуса, косинуса, тангенса, котангенса для будь-якого кута від 0° до 180°
- •Вектори на площині
- •Координати векторa
- •Додавання векторів
- •Множення вектора на число
- •Скалярний добуток векторів
- •Розкладання вектора за координатними осями
- •Декартові координати в просторі
- •Перетворення в просторі
- •Подібність просторових фігур
- •Вектори в просторі
- •Предметний покажчик
Геометрія
планіметрія
Основні властивості найпростіших геометричних фігур
Ге о м е т р і я — це наука про властивості геометричних фігур.
Зверніть увагу: геометрична фігура — це не тільки трикутник, коло, піраміда тощо, а й будь-яка множина точок.
П л а н і м е т р і я — це розділ геометрії, у якому вивчаються фігури на площині.
То ч к а і п р я м а є основними поняттями планіметрії. Це означає, що цим поняттям не можна дати точне означення. Їх можна тільки уявити, спираючись на досвід та перелічивши їхні властивості.
Твердження, справедливість яких приймається без доведення, називаються а кс і о м а м и. Вони містять формулювання основних властивостей найпростіших фігур.
Твердження, які доводять, називаються т е о р е м а м и. О з н а ч е н н я — це пояснення якогось поняття, яке спирається або на основні поняття, або на поняття, що ви-
значені раніше.
Позначення: точки позначаються великими латинськими буквами; прямі — малими латинськими буквами або двома великими латинськими буквами (якщо на прямій позначені дві точки).
На рисунку зображено точки A, B, C, N, М та прямі a і b. Пряму а можна позначити як пряму MN (або NM).
209
Геометрія
A |
B |
a |
N
M
C
b
Запис M a означає, що точка M лежить на прямій а. Запис C a означає, що точка С не лежить на прямій а.
Треба розуміти, що прямі a і b на рисунку перетинаються, хоча ми не бачимо, у якій точці .
Аксіоми
Основні властивості (аксіоми) належності точок і прямих на площині
Аксiома І
1.Яка б не була пряма, існують точки, що належать цій прямій, і точки, що не належать їй.
2.Через будь-які дві точки можна провести пряму, і тільки одну. (Треба розуміти, що тут містяться два тверджен-
ня: по-перше — існування такої прямої, а по-друге — її єдиність.)
Аксiома ІІ. Із трьох точок на прямій одна й тільки одна лежить між двома іншими.
В і д р і з к о м називається частина прямої, яка складається з усіх точок цієї прямої, що лежать між двома даними її точками. Ці точки називаються к і н ц я м и в і д р і з к а. На рисунку зображено відрізок АВ (відрізок позначають, записуючи його кінці).
AB
210
планіметрія. Основні властивості найпростіших геометричних фігур
Основні властивості (аксіоми) вимірювання відрізків
Аксiома ІІІ
1.Кожний відрізок має певну довжину, більш у від нуля.
2.Довжина відрізка дорівнює сумі довжин частин, на які він розбивається будь-якою його точкою.
Основна властивість розміщення точок відносно прямої на площині
Аксiома ІV. Пряма розбиває площину на дві півпло щини.
Це розбиття має таку властивість: якщо кінці якогонебудь відрізка належать одній півплощині, то відрізок не перетинає пряму; якщо кінці відрізка належать різним півплощинам, то відрізок перетинає пряму.
П і в п р я м о ю, або п р о м е н е м, називають частину прямої, яка складається з усіх точок цієї прямої, що лежать по один бік від даної на ній точки. Ця точка називається
п о ч а т к о в о ю т о ч ко ю п р о м е н я. Різні півпрямі однієї прямої зі спільною початковою точкою називаються д о п о в н я л ьн и м и.
На рисунку подані промені AB (він же AC), DA (або DB,
DC), BC, CB (або CA, CD), BA (або BD), AD.
D A B C
Промені AB і AD, BC і BD — доповняльні. Промені BD і AC не є доповняльними, бо у них різні початкові точки.
Ку т — це фігура, яка складається з точки — в е р ш и н и к у т а — і двох різних півпрямих, що виходять із цієї точ-
ки, — с т о р і н к у т а.
Кут, поданий на рисунку, можна позначити так: AOB,
(ab), O.
211
Геометрія
A a
b
O B
Якщо сторони кута є доповняльними півпрямими, кут називають р о з г о р н у т и м:
A |
O |
B |
Кажуть, що п р о м і н ь |
п р о х о д и т ь м і ж с т о р о |
|
н а м и к у т а, якщо він виходить з його вершини й перетинає який-небудь відрізок з кінцями на сторонах кута. Для розгорнутого кута вважаємо, що будь-який промінь, який виходить з його вершини і відмінний від його сторін, проходить між сторонами кута.
Основні властивості вимірювання кутів
Аксiома V
1.Кожний кут має певну градусну міру, більшу від нуля. Розгорнутий кут дорівнює 180°.
2.Градусна міра кута дорівнює сумі градусних мір кутів, на які він розбивається будь-яким променем, що проходить між його сторонами.
Основні властивості відкладання відрізків і кутів
Аксiома VІ. На будь-якій півпрямій від її початкової точки можна відкласти відрізок даної довжини , і тільки один.
Аксiома VІІ. Від будь-якої півпрямої у дану півплощину можна відкласти кут з даною градусною мірою, меншою за 180°, і тільки один.
212
планіметрія. Основні властивості найпростіших геометричних фігур
Тр и к у т н и к о м називається фігура, яка складається з трьох точок, що не лежать на одній прямій, і трьох відрізків, які попарно сполучають ці точки. Точки називаються
в е р ш и н а м и т р и к у т н и к а, а відрізки — його с т о р о н а м и.
Трикутник на рисунку можна позначити так: ABC, або ACB, або BCA і т. д.
B
ас
C
A b
Основні елементи поданного вище трикутника: сторони
AB, AC, BC (або a, b, c); кути A (або BAC), B, C. A і C —
прилеглі до сторони AC. B — протилежний стороні AC. Трикутники називаються р і в н и м и, якщо у них від-
повідні сторони рівні й відповідні кути рівні. При цьому відповідні кути мають лежати проти відповідних сторін.
Запис ABC = KMN означає (див. рисунок), що:
AB = KM; |
A =K; |
BC = MN; |
B =M; |
AC = KN; |
C =N. |
B |
M |
A C K N
213
Геометрія
Основна властивість існування рівних трикутників
Аксiома VІІІ. Який би не був трикутник, існує трикутник, що дорівнює йому в заданому розміщенні відносно даної півпрямої.
Прямі називаються п а р а л е л ьн и м и, якщо вони не перетинаються.
Паралельні прямі, зображені на рисунку, можна позначити так: a b або AB CD.
|
|
B |
a |
A |
D |
|
||
|
|
b
C
Аксіома паралельних прямих
Аксiома ІХ. Через точку, що не лежить на даній прямій, можна провести на площині не більше як одну пряму, паралельну даній.
Зверніть увагу: аксіома стверджує єдиність такої прямої, але не стверджує її існування.
Взаємне розміщення прямих на площині
Дві прямі на площині можуть:
•збігатися;
•бути паралельними (тобто не перетинатися );
•мати одну спільну точку.
(Дійсно, якщо б дві прямі могли мати хоча б дві спільні
точки, то через ці дві точки проходили б дві різні прямі, що суперечить аксіомі І, п. 2).
214
