Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глава 3 СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА.doc
Скачиваний:
85
Добавлен:
07.02.2015
Размер:
12.92 Mб
Скачать

Глава 3. Строение глазного яблока

Эпителиальные клетки центральной зоны отличаются исключительно низкой митотичес-кой активностью [22, 23]. Митотический индекс равен всего 0,0004% и приближается к мито-тическому индексу эпителиоцитов экваториаль­ной зоны при возрастной катаракте [556; 1187]. Существенно митотическая активность возрас­тает при различных патологических состояниях и, в первую очередь, после травмы [11, 444, 445, 859—862, 881, 926—928, 1157, 1158, 1188, 1189]. Увеличивается число митозов после воз­действия на эпителиальные клетки ряда гормо­нов [929; 1192; 1124], при экспериментальных увеитах [760, 881, 1,157, 1188].

Промежуточная зона. Промежуточная зо­на находится ближе к периферии хрусталика. Клетки этой зоны цилиндрические с централь­но расположенным ядром. Базальная мембрана имеет складчатый вид.

Герминативная зона. Герминативная зона прилежит к преэкваториальной зоне. Именно эта зона отличается высокой пролиферативной активностью клеток (66 митозов на 100 000 клеток), которая постепенно снижается с воз­растом. Длительность протекания митоза у раз­личных животных колеблется от 30 минут до 1 часа. При этом выявлены суточные колеба­ния митотической активности [22, 23].

Клетки этой зоны после деления смещаются кзади и в последующем превращаются в хрус-таликовые волокна. Некоторые из них смеща­ются и кпереди, в промежуточную зону.

Цитоплазма эпителиоцитов содержит мало­численные органоиды [201]. Имеются корот­кие профили шероховатого эндоплазматическо-го ретикулума, рибосомы, маленькие митохонд­рии и аппарат Гольджи [13] (рис. 3.4.10, б). Количество органоидов нарастает в экватори­альной области по мере увеличения количества структурных элементов цитоскелета [863] ак­тина, виментина, белка микротрубочек, спект-рина, альфа-актинина и миозина. Существует возможность различить целые актиновые сете-подобные структуры, особенно видимые в апи­кальной и базальной частях клеток [865, 866, 1209]. Помимо актина в цитоплазме эпители­альных клеток выявлены виментин и тубулин [531]. Предполагают, что сократительные мик-рофиламенты цитоплазмы эпителиальных кле­ток способствуют путем их сокращения переме­щению межклеточной жидкости.

В последние годы показано, что пролифера-тивная активность эпителиальных клеток гер­минативной зоны регулируется многочислен­ными биологически активными веществами — цитокинами [789]. Выявлено значение интерлей-кина-1, фактора роста фибробластов, трансфор­мирующего фактора роста бета, эпидермаль-ного фактора роста, инсулиноподобного факто­ра роста, фактора роста гепатоцитов, фактора роста кератиноцитов, постагландина Е2. Часть перечисленных факторов роста стимулируют

пролиферативную активность, а часть — инги-бируют ее [73, 516, 789, 1161]. Необходимо от­метить, что перечисленные факторы роста син­тезируются или структурами глазного яблока, или другими тканями оранизма, поступая в глаз через кровь.

Процесс формирования хрусталиковых во­локон. После конечного разделения клетки одна или обе дочерние клетки смещаются в смежную переходную зону, в которой клетки организованы в меридианально ориентирован­ные ряды (рис. 3.4.4, 3.4.5, 3.4.11).

Рис. 3.4.11. Особенности расположения хрусталиковых волокон:

а — схематическое изображение; б — сканирующая электронная микроскопия (по Kuszak, I989)

В последующем эти клетки дифференциру­ются во вторичные волокна хрусталика, раз­ворачиваясь на 180° и удлиняясь. Новые волок­на хрусталика сохраняют полярность таким об­разом, что задняя (базальная) часть волокна сохраняет контакт с капсулой (базальной плас­тинкой), в то время как передняя (апикальная) часть отделена от этого эпителием. По мере превращения эпителиоцитов в хрусталиковые волокна фомируется ядерная дуга (при микро­скопическом исследовании ряд ядер эпители­альных клеток, расположенных в виде дуги).

Хрусталик и ресничный поясок (зонулярньш аппарат)

211

Предмитотическому состоянию эпителиаль­ных клеток предшествует синтез ДНК, в то время как дифференциация клеток в хрустали-ковые волокна сопровождается усилением син­теза РНК, поскольку в этой стадии отмечается синтез структурных и мембранных специфи­ческих белков. Ядрышки дифференцирующихся клеток резко увеличиваются [629], а цитоплаз­ма становится более базофильной в связи с увеличением количества рибосом [280, 555], что объясняется усилением синтеза мембран­ных компонентов [106], белков цитоскелета и кристаллинов хрусталика [372; 555]. Эти струк­турные изменения отражают усиление белково­го синтеза [815].

В процессе образования хрусталикового во­локна в цитоплазме клеток появляются много­численные микротрубочки диаметром 5 нм [686, 863] и промежуточные фибриллы [686, 687], ориентированные вдоль клетки и играю­щие важную роль в морфогенезе хрусталико-вых волокон [759, 798, 827].

Клетки различной степени дифференциации в области ядерной дуги располагаются как бы в шахматном порядке. Благодаря этому меж­ду ними образуются каналы, обеспечивающие строгую ориентацию в пространстве вновь диф­ференцирующихся клеток. Именно в эти кана­лы проникают цитоплазматические отростки. При этом образуются меридианальные ряды хрусталиковых волокон.

Важно подчеркнуть, что нарушение мериди-анальной ориентации волокон является одной из причин развития катаракты как у экспери­ментальных животных [1188, 1190, 1191], так и у человека [1050, 1104].

Превращение эпителиоцитов в хрусталико-вые волокна происходит довольно быстро. Это было показано в эксперименте на животных с использованием тимидина, меченного изотопом [148, 439, 732, 736, 1189]. У крыс эпителиоцит превращается в хрусталиковое волокно спустя 5 недель.

В процессе дифференциации и смещения клеток к центру хрусталика в цитоплазме хру­сталиковых волокон уменьшается количество органоидов и включений. Цитоплазма приобре­тает гомогенный вид. Ядра подвергаются пик-нозу, а затем и полностью исчезают [550, 631, 1141]. Вскоре исчезают органоиды [96, 97, 550, 749, 750, 798, 815]. Basnett [96, 97] выявил, что потеря ядер и митохондрий наступает вне­запно и в одном поколении клеток.

Количество хрусталиковых волокон на про­тяжении жизни постоянно увеличивается. «Ста­рые» волокна смещаются к центру. В результа­те этого формируется плотное ядро.

С возрастом уменьшается интенсивность об­разования хрусталиковых волокон. Так, у моло­дых крыс в сутки формируется приблизительно пять новых волокон, в то время как у старых крыс —одно [148, 439, 736].

Особенности мембран эпителиальных кле­ток. Цитоплазматические мембраны соседних эпителиальных клеток формируют своеобраз­ный комплекс межклеточных связей. Если бо­ковые поверхности клеток слегка волнистые, то апикальные зоны мембран образуют «пальце­вые вдавления», погружающиеся в надлежащие хрусталиковые волокна. Базальная часть кле­ток присоединена к передней капсуле при помо­щи полудесмосом, а боковые поверхности кле­ток соединяются десмосомами.

На боковых поверхностях мембран смежных клеток обнаружены также щелевые контакты, через которые может происходить обмен не­большими молекулами между хрусталиковыми волокнами [96, 97, 629, 858]. В области щеле­вых контактов обнаруживаются белки кенне-сины различной молекулярной массы [1071]. Некоторые исследователи предполагают, что щелевые контакты между хрусталиковыми во­локнами отличаются от таковых в других орга­нах и тканях.

Исключительно редко можно увидеть плот­ные контакты [620, 664, 666].

Структурная организация мембран хруста­ликовых волокон и характер межклеточных контактов свидетельствуют о возможном нали­чии на поверхности клеток рецепторов, конт­ролирующих процессы эндоцитоза, который имеет большое значение в перемещении мета­болитов между этими клетками [156]. Предпо­лагается существование рецепторов к инсули­ну, гормону роста и бета-адренергическим анта­гонистам. На апикальной поверхности эпите­лиальных клеток выявлены ортогональные час­тицы, встроенные в мембрану и имеющие диаметр 6—7 нм [251, 452, 612, 635, 1029]. Предполагают, что эти образования обеспечи­вают перемещение между клетками питатель­ных веществ и метаболитов [156, 623].

Волокна хрусталика (fibrae lentis) (рис. 3.4.5, 3.4.10—3.4.12). Переход от эпите­лиальных клеток герминативной зоны к хруста-ликовому волокну сопровождается исчезнове­нием между клетками «пальцевых вдавлений», а также началом удлинения базальной и апи­кальной частей клетки. Постепенное накопле­ние хрусталиковых волокон и смещение их к центру хрусталика сопровождается формиро­ванием ядра хрусталика. Это смещение кле­ток приводит к образованию S- или С-подобной дуги (ядерная дуга), направленной вперед и состоящей из «цепи» ядер клеток. В области экватора зона ядерных клеток имеет ширину порядка 300—500 мкм [629].

Расположенные глубже волокна хрусталика имеют толщину 150 мкм. Когда они теряют ядра, ядерная дуга исчезает. Хрусталиковые волокна имеют веретенообразную или ремнепо-добную форму, располагаясь по дуге в виде концентрических слоев. На поперечном разрезе в области экватора они гексагональной формы.

212