
- •Глава 3
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.2.1. Роговая оболочка
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.2.2. Склера
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.3.2. Дренажный аппарат
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.3.3. Увеосклеральный путь оттока
- •3.3.5. Старение глаза
- •Глава 3. Строение глазного яблока
- •3.4.1. Хрусталик
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.4.2. Ресничный поясок
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.4.3. Регенерация хрусталика и ресничного пояска
- •3.4.4. Возрастные изменения хрусталика
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.5.2. Зоны, связки и лакуны
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.5.4. Основание стекловидного тела
- •3.5.6. Клетки
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.5.9. Регенерация стекловидного тела
- •3.6.1. Пигментный эпителий
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •44 Рис. 3.6.15. Топографические особенности распределения плотности колбочек в области центральной ямки (по Curcio et al., 1987):
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.6.5. Глиальная система сетчатки
- •Глава 3. Строение глазного яблока
- •1 Микр°глия •
- •Глава 3. Строение глазного яблока
- •3.6.6. Межклеточное пространство сетчатки
- •3.6.7. Топографические особенности строения сетчатки
- •Глава 3. Строение глазного яблока
- •3.6.8. Сосудистая система сетчатки
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.6.9. Гемато-ретинальный барьер
- •Глава 3. Строение глазного яблока
- •3.7.1. Микроскопическое строение
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.7.3. Внутриглазничная часть зрительного нерва
- •3.7.4. Внутриканальцевая часть зрительного нерва
- •3.7.5. Внутричерепная часть зрительного нерва
- •3.7.6. Оболочки зрительного нерва
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.7.10. Регенерация зрительного нерва
- •3.8.1. Артерии и вены глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.8.2. Радужная оболочка
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.8.3. Ресничное тело
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •3.8.4. Собственно сосудистая оболочка
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
- •Глава 3. Строение глазного яблока
Глава 3. Строение глазного яблока
лящимся
клеткам относятся нейроны головного
мозга,
а в глазном яблоке нейроны сетчатой
оболочки.
Старение роговицы приводит к возникновению различных структурных и функциональных изменений. Эти изменения приводят к нарушению прозрачности роговицы, снижению регенераторной способности, нарушению кривизны поверхности, снижению адаптационной способности ткани роговицы и др. [402].
Поскольку трудно отличить возрастные изменения от изменений, возникающих при различных патологических состояниях роговицы, имеет смысл кратко остановиться на основных положениях процесса старения.
Первоначально мы охарактеризуем особенности старения клетки.
Деление в популяции клеток происходит постоянно и находится под генетическим контролем [647, 997]. Одним из основных признаков старения клетки являются нарушение цикла репликации и нарушение жизненного цикла клетки. При этом клетки выходят из митотического цикла все в большем количестве. В клетках, вышедших из клеточного цикла, отмечается постоянное накопление нарушений как структуры, так и функции. Этим объясняется увеличение вероятности развития дегенерации ткани при старении по мере накопления подобных клеток [187, 455].
Необходимо указать на отличия между стареющими клетками и клетками, находящимися в состоянии покоя (О0-фаза). В состоянии покоя дифференцированные клетки не пролифе-рируют благодаря наличию контактного торможения. Стареющие клетки выходят из цикла не в состоянии конечной дифференциации [794]. Именно по этой причине фенотип дифференцированной и стареющей клетки, выходящей из митотического цикла, существенно отличается. В первую очередь необходимо указать на то, что стареющая клетка покидает цикл с содержанием ДНК, характерным фазе G! [395]. При этом в ее ДНК происходит ряд изменений, приводящих к нарушению функции клетки [455, 1004]. К основному нарушению относят подавление транскрипции части генов [1178]. Подобные изменения могут быть «критическими», т. е. изменениями, приводящими к нарушению целостности и функции всей ткани.
В литературе рассмаривается два основных пути, по которым происходит старение клетки. Первый путь — «конститутивное старение». Теория «конститутивного старения» предполагает, что при старении в результате пролиферации клеток увеличивается вероятность накопления в геноме ошибок, выводящих клетку из пролиферативного пула [837, 1015]. Этот процесс является вероятностным, и трудно определить закономерности его развития. Кинетику «конститутивного старения» можно объяснить возможным прогрессивно нараста-
ющим нарушением репликативной способности ДНК [55].
Второй путь старения клетки — это так называемое «реактивное старение». При этом типе старения предполагают, что, подобно апоп-тозу, старение может быть вызвано мутацией или влиянием на геном различных мутагенных факторов (противоопухолевые препараты и др.). Основным отличием от «конститутивного старения» является то, что подвергаются старению клетки с небольшой пролиферативной активностью. Офтальмолог должен помнить о подобном типе старения, поскольку в арсенале лечебных средств, используемых им, есть многочисленные мутагенные препараты, такие как 5-фтороурацил (применяется для предотвращения рубцевания после удаления птеригиума или после операции по поводу глаукомы), мито-цин С. Экспериментально показано ускорение процесса старения клеток под воздействием этих препаратов в культуре ткани [142]. Подобные лекарственные средства легко проникают через роговую оболочку и склеру при введении их в конъюнктивальную полость и могут явиться причиной преждевременного старения клеток различных структур глаза, что проявляется разным образом и спустя неодинаковый период времени после проведенного лечения [604, 570].
Представляют особый интерес и данные, указывающие на стимуляцию процессов старения кератоцитов стромы роговицы после удаления переднего эпителия. Выражается это резким увеличением явлений апоптоза кератоцитов стромы, особенно ее передних слоев. В последующем, после эпителизации роговицы, происходит замещение погибших клеток новыми кератоцитами, мигрирующими из задних слоев стромы [1173, 1174]. Гибель кератоцитов в такой ситуации является примером конститутивного старения. Подобный тип старения, сопровождающийся уменьшением плотности кератоцитов, может стать причиной развития хронических заболеваний роговой облочки различной этиологии.
К сожалению, явления старения структур роговой оболочки у человека изучены далеко не полностью. Тем не менее увеличение количества стареющих клеток с возрастом показано на культуре ткани клеток переднего эпителия, а также при исследовании роговой оболочки пожилых людей [374, 958]. С возрастом увеличивается также и количество старых клеток в эндотелии роговой оболочки [506].
Возникает вопрос: каким образом накопление с возрастом стареющих клеток влияет на частоту патологических состояний роговицы?
Основным изменением стареющей роговицы является снижение ее адаптационных возможностей. При этом роговица более подвержена инфекционному поражению. Увеличивается проницаемость как переднего, так и заднего эпителия [188].
Роговая оболочка и склера
183
Нарушение
распределения в эпителии роговицы
интегринов приводит к нарушению
межклеточных
контактов, что является причиной более
свободного проникновения в нее бактерий,
вирусов и клеток крови [471, 489]. Выявлено
также, что при старении нарушение
целостности
переднего эпителия роговицы сопровождается
нарушением целостности и эндотелия
[512]. Это, в свою очередь, приводит к отеку
стромы роговицы и ее помутнению.
Исследований, посвященных изучению особенностей старения кератоцитов, немного. Тем не менее большинство исследователей переносят на эти клетки закономерности, выявленные при исследовании фибробластов in vitro. Показано, что при старении происходит экспрессия в фибробластах таких ферментов, как колагеназа, стромолизин и эластаза [398, 1223]. Наблюдается экспрессия металлопротеиназ [175, 740], уменьшение количества коллагена — mRNA [741]. Нарушен также синтез фибронек-тина [1023]; снижается синтез протеогликанов [512], а также способность фибробластов контролировать трехмерную организацию коллаге-новых волокон в культуре ткани. Отмечено накопление липофусцина в стареющих роговицах (cornea farlnata).
Особое место занимают выявленные нарушения синтеза коллагена. Подобные изменения, как правило, сопровождаются дезорганизацией коллагеновых фибрилл [255, 681, 1134]. Полученными данными во многом можно объяснить изменения стромы роговицы [552, 553, 751].
Необходимо отметить, что вышеприведенные изменения могут влиять и на характер регенерации роговой оболочки. Сводится это к уменьшению способности кератоцитов к пролиферации и миграции в область повреждения, синтезу коллагена и влиянию клеток на организацию коллагеновых фибирилл. Снижение репаративной способности структур роговицы описано у пожилых людей после экстракции катаракты [549]. В подобных случаях старение неблагоприятно влияет на эффективность хирургических вмешательств. При проведении фильтрирующих операций по поводу глаукомы более длительная регенерация структур роговицы может иметь, наоборот, положительное значение. Необходимо отметить и то, что возрастные изменения роговицы оказывают определенное влияние на эффективность и рефракционных операций [191, 275, 1146].
Теперь мы кратко остановимся на возрастных изменениях эндотелия роговицы. В результате многочисленных исследований установлено, что в возрасте между 20 и 80 годами жизни плотность эндотелиальных клеток уменьшается в среднем на 0,6%. При этом усиливаются клеточный полиморфизм и гиперплоидизация [127, 136, 640, 767]. Тем не менее показатель плотности клеток у отдельных индивидуумов колеблется в широких пределах, в связи с чем этот
показатель не является надежным при определении связи между возрастом и структурой эндотелия [633]. Снижение количества эндотелиальных клеток связывают с изменением гормонального фона, влиянием ультрафиолетового излучения, действием токсических веществ. Например, отмечающееся при старении нарушение перекисного окисления со скоплением свободных радикалов приводит к повреждению эндотелия [401].
Снижение плотности клеток приводит к нарушению и основной функции эндотелия, а именно поддержанию осмотического давления стромы [810]. С возрастом ткань роговой оболочки также значительно хуже реагирует на гипоксию [836]. Значительно дольше происходит приживление транспалантанта [284, 574].
Таким образом, старение приводит к достаточно существенным изменениям как структуры, так и функции роговой оболочки, изменяя ее реактивность в норме и патологии. Это необходимо учитывать офтальмологу при оценке возможной эффективности проводимой терапии и, особенно, при разработке новых методов лечения.
Регенерация роговой оболочки. Различают следующие виды регенерации — физиологическая, репаративная и заместительная.
Физиологическая регенерация характеризует постоянное обновление клеточного состава ткани в обычных (физиологических) условиях, обеспечивая тем самым нормальное функционирование ткани. Качественные характеристики физиологической регенерации существенно отличаются в зависимости от происхождения и гистологического строения ткани. Например, если передний эпителий роговой оболочки в норме регенерирует посредством постоянно протекающих митотических делений базальных клеток, то задний эпителий обновляется за счет так называемой внутриклеточной регенерации, характеризующейся постоянным обновлением, в первую очередь, внутриклеточных органоидов.
Полное обновление переднего эпителия роговицы происходит примерно за неделю [30, 441, 688]. Раньше предполагали, что постоянное замещение слущивающихся поверхностных клеток происходит благодаря митотическим делениям клеток базального слоя. Дочерняя клетка при этом перемещается к поверхности. Теперь доказано, что в лимбальной области располагаются стволовые клетки, мигрирующие к центральным участкам роговичного эпителия [152, 217, 1111]. Стволовые клетки базального эпителия отличаются от остальных клеток как морфологически, так и наличием ци-токератинов. Таким образом, пополнение состава клеток эпителия происходит путем первоначальной миграции стволовых клеток из лимбальной области, а затем их пролиферацией в базальном слое эпителия. Косвенным под-
184