Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОНСПЕКТ САЭП ДРАГОМАРЕЦКИЙ 2009.doc
Скачиваний:
648
Добавлен:
10.09.2019
Размер:
17.78 Mб
Скачать

Часть 2.

Под действием положенного на борт угла судно начнёт возвращаться на курс.

При этом ротор сельсина-трансформатора курса СТк ( ПУ, М2 ) станет возвращать-

ся в исходное ( нулевое ) положение, значит, напряжение этого сельсина U1 станет умень-

шаться и окажется меньше, чем напряжение сельсина-трансформатора руля U5.

Поэтому вновь появится напряжение управления

Uу = ↓U1 U5,

имея фазу большего напряжения, т.е. напряжения U5.

В результате серводвигатель Др ( ИМ, М2 ) реверсирует и станет перемещать бара-

бан насоса из нулевого положения влево, из-за чего перо руля реверсирует и станет возвра

щаться в диаметральную плоскость.

При этом роторы СТк и СТр возвращаются в нулевые положения, поэтому оба на-

пряжения, U1 и U5, одновременно уменьшаются.

В хорошо отрегулированном авторулевом в момент возвращения судна на курс

( U1 = 0 ) перо руля успевает вернуться в диаметраль ( U5 = 0 ), а серводвигатель останав-

ливается, вернув перед этим барабан насоса в нулевое положение.

Таким образом, во второй части барабан насоса Холла совершил возвратно-посту-

пательное движение в левой половине насоса, что привело к возврату руля в диаметраль и его остановке.

На самом деле судно не выйдет на линию курса, а пересечёт её. Это вызовет анало-

гичный описанному процесс, только фазы всех напряжений в уравнении управления изме-

нятся на 180º ( кроме напряжения на выходе сельсина-трансформатора интегратора СТи,

М10, Пу )..

Теперь рассмотрим поочередно работу дифференцирующего и интегрирующего

устройств.

Дифференцирующее устройство

Как было объяснено выше, дифференцирующее устройство построено на тахогене-

раторе ТГ( ПУ, М8 ) с выходным напряжением

U2 = к2 dα / dt.

Поясним принцип действия дифференцирующего устройства, для чего рассмотрим 2 следующих один за другим момента времени:

1. судно уходит с курса;

2. судно возвращается на курс.

В первом случае, при уходе судна с курса ротор тахогенератора курса ТГ ( ПУ, М8)

поворачивается при помощи ротора сельсина-приёмника курса СПк ( ПУ, М7 ).

При этом напряжение U1 на выходе СТк ( М2, ПУ ) и напряжение U2 на выходе ТГ совпадают по фазе, поэтому напряжение управления

Uу = U1 + U2.

Отсюда следует, что напряжение ТГ, добавляясь к напря­жению СТк, увелиивает на-

пряжение управле­ния.

Значит, скорость вывода руля из диаметрали увеличивается, а на баллере быстрее возникнет момент, возвращающий затем судно на курс При этом уменьшается амплитуда рыскания судна.

Во втором случае судно возвращается на курс под действием момента на баллере

руля.

Начнём объяснение с момента окончания первого случая: перо руля выведено из

диаметральной плоскости и остановлено.

Для этого момента справедливо уравнение

Uу = U1 U5 = 0,

смысл которого в том, что при неподвижном руле напряжение U1 на выходе СТк уравно-

вешивается равным, но противоположным по фазе напряжением U5 на выходе СТр.

Сам процесс происходит так.

При возвращении судна на курс, ротор СТк станет возвращаться в нулевое положе-

ние, поэтому напряжение U1 станет уменьшаться ( U1 )

Одновременно ротор ТГ реверсирует, поэтому фаза напряжения U2 изменится на

180º, теперь это напряжение совпадает по фазе с напряжением U5 ( в 1-м случае – с напря

жением U1 ).

Значит, напряжение управления

Uу =U1 U2 - U5 = ↓U1 – ( U2 + U5 )

также изменит свою фазу на 180º, поэтому перо руля начнёт возвращаться в диамет

ральную плоскость.

Как следует из уравнения, напряжение U2 ТГ и напряжение U5 СТр имеют одина-

ковый знак ( фазу ).

Значит, напряжение ТГ, добавляясь к напряжению СТр, и во втором случае увели

чит напряжение управления Uу, а значит, и скорость возврата пера руля в диаметраль.

При этом уменьшается перекатывание судна за линию курса.

Сравнивая действие сигнала ТГ в этих 2-х случаях, можно сделать общий вывод :

сигнал ТГк увеличивает скорость прямой и обратной кладки пера руля и тем самым повышает точность удержания судна на курсе.

Однако при этом кладки руля становятся более частыми и глубокими, что увеличи

вает нагрузку на рулевую машину.

Поэтому в штормовую погоду, когда судно рыскает быстро и часто, ТГ "загрубля-

ют", т.е. уменьшают его напряжение путем уменьшения коэффициента усиления усили-

теля производной типа УП-1 ( ПУ ) или установкой переключателя «Грубо-точно» усили-

теля мощности У-1М в положение «Грубо» ( на схеме не показан ).

Рис. 288. Траектория движения судна относительно курса без сигнала ТГк

( кривая 1 ) и с сигналом ТГк ( кривая 2 ).

Как следует из сравнения кривых 1 и 2, в отсутствие сигнала тахогенератора ам-

плитуда рысканий судна и период рыскания велики ( кривая 1 ), а при наличии сигнала

( кривая 2 ) – гораздо меньше, т.е. повышается точность удержания судна на курсе.

Интегрирующее устройство

Интегрирующее устройство ( ИУ ) предназначено для устранения ( компенсации ) влияния на судно несимметричных внешних воздействий – волны, ветра.

Такие воздействия постепенно изменяют курс судна, что недопустимо. На судах, где авторулевые не имеют ИУ, в течение вахты вахтенному помощнику приходится пери

одически вносить поправки в курс судна, что усложняет несение вахты на мостике.

В авторулевом АТР2-10 в состав ИУ входят 3 электрические машины:

1. сельсин-трансформатор курса СТ1 ( ПУ, М5 );

2. двигатель интегратора Ди ( ПУ, М9 );

3. сельсин-трансформатор интегратора СТи ( ПУ, М10 ).

При уходе судна с курса ротор СПк ( ПУ, М7 ) разворачивает ротор СТ1 ( ПУ, М5 ). Выходное напряжение последнего через контакты ВК1-4 и В12 подаётся на обмот-

ку управления двигателя интегратора Ди ( ПУ, М9 ).

Ротор Ди через редуктор с большим передаточным отношением ( ι = 40 000 ) связан с ротором СТи.

Рассмотрим работу интегрирующего устройства в двух случаях:

1. судно рыскает симметрично относительно линии курса ( рис. 289, а );

2. судно рыскает несимметрично относительно линии курса, т.к. возникли внешние

несимметричные силы ( волна, ветер ), уводящие судно с курса ( рис. 289, б ).

Рис.289. Траектория движения судна при симметричных ( а ) и несимметричных

( б ) рысканиях судна относительно курса

В хорошую погоду ( рис. 289, а ) судно рыскает симметрично относительно курса на одинаковые углы α1 ( вправо ) и α2 ( влево ), причём одинаковы также промежутки вре-

мени рыскания t1 и t2.

Ротор СТ1 в течение промежутков времени t1 и t2 поворачивается на одинаковые углы в разные стороны.

При этом двигатель интегратора Ди совершает одинаковое число оборотов в раз-

ные стороны, т.е. за время ( t1 + t2 ) остаётся на месте ( точка С ).

Поэтому при симметричных рысканиях судна относительно курса ротор СТи не по

ворачивается.

При несимметричном рыскании ротор СТ1 поворачивается в одну сторону на боль

ший угол, чем в другую (α1 > α2 ) .

При этом неодинаковы не только углы поворота ротора СТ1, но и проме­жутки вре-

мени, в течении которых ротор СТ1 был повернут (t1> t2 ).

Поскольку на отрезке времени t2 ротор СТ1 развернут на больший угол, чем на отрезке времени t1 , выходное напряжение СТ1, а значит, и скорость вращения ротора Ди

Будет больше, чем на отрезке времени t1 .

Поэтому ротор двигателя Ди на отрезке времени t2 вращается быстрее и дольше,

чем на отрезке времени t1 . В результате ротор СТи начнет медленно поворачиваться и че-

рез 30...40 мин остановится.

При этом на выходе СТи появится напряжение

U3 = к3 α dt,

в котором:

1. α - алгебраическая сумаы углов рыскания судна в разные стороны;

2. dt = t – время накопления сигнала интегратора , т.е. время, в течение

которого поворачивался ротор СТи, т.е. судно рыскало несимметрчно и накапливался си-

гнал ИУ.

В авторулвых типа АТР это время составляет от 30 до 40 мин.

Поскольку через 30…40 мин ротор СТи остановится, в дальнейшем напряжение

U3 не будет изменяться не по величине, ни по фазе.

В результате появления этого напряжения судно станет идти по курсу, совершая

относительно курса симметричные рыскания ( как если бы ветра и волны не было ).

Причина этого в том, что за счёт напряжения U3 на выходе СТи кладки пера руля в

разные стороны стали неодинаковыми, несимметричными.

Для доказательства рассмотрим момент остановки пера руля.

Для этого момента справедливо уравнение

Uу = U1 ± U3 U5 = 0

где: U1 = к1 α – выходное напряжение СТк ( ПУ, М2 );

U3 = к3 α dt – выходное напряжение СТи ( ПУ, М10 );

U5 = к5 β - выходное напряжение СТр ( РД, М2 ).

Физический смысл уравнения состоит в том, что судно не на курсе ( U1 ≠ 0 ), руль

не в диаметральной плоскости ( U5 ≠ 0 ), на выходе ИУ накопился сигнал (U3 ≠ 0 ).

Из уравнения следует

U5 = U1 ± U3.

Отсюда видно, что в момент остановки пера руля в одном случае напряжение

U'5 = U1 + U3,

а в другом

U"5 = U1 - U3,

причём U'5 > U"5, значит, β' > β" .

Иначе говоря, при наличии сигнала ИУ углы кладки пера руля на левый и правый борта становятся неодинаковыми.

Разным углам кладки соответствуют неодинаковые моменты на баллере руля: Мб' > Мб".

Можно условно считать, что к баллеру руля постоянно приложен разностный мо

мент ΔМб = Мб' - Мб" , имеющий знак большего момента, т.е. Мб'.

Этот момент ΔМб направлен навстречу моменту внешних сил Мвн и компенсирует

его( рис. 290 ).

Рис. 290. Образование на баллере руля избыточного момента:

ГК – генеральный курс судна; Fвн – внешние силы ( ветер, волна ), уводящие судно с курса; Мвн – момент внешних сил; ΔFб – равнодействующая сила на баллере, возникаю-

щая при неодинаковых кладках пера руля в разные стороны; ΔМб – разностный момент на баллере

В результате после окончания накопления сигнала интегрирующего устройства

( 30…40 ми ) судно станет рыскать относительно курса симметрично, т.е так, как если бы несимметричных внешних воздействий ( ветер, волна ) не было бы.

При повороте ротора СТи ( ПУ, М10 ) в ту или иную сторону замыкается левый

( как на рис. 286 ) или правый контакт контактного приспособления КП-2, подготавливая узел интегратора к сбросу напряжения U3 на нуль в случае перехода с автоматического управления на следящее или простое ( см. ниже ).