Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОНСПЕКТ САЭП ДРАГОМАРЕЦКИЙ 2009.doc
Скачиваний:
648
Добавлен:
10.09.2019
Размер:
17.78 Mб
Скачать

3. Основные определения

Правила классификации и постройки морских судов предусматривают для ру

левых приводов следующие основные определения:

1. главным называется привод, предназначенный для управления судном в нор-

мальных условиях эксплуатации.

2. вспомогательным называется привод, предназначенный для управления судном в случае выхода из строя главного рулевого привода.

3. силовым агрегатом рулевого привода называют механизмы, предназначенные для создания энергии, необходимой для поворота руля.

Силовым агрегатом электромеханического ( секторного ) рулевого привода явля-

ется электродвигатель с относящимся к нему электрооборудованием.

Силовым агрегатом электрогидравлического рулевого привода является электро-

двигатель с относящимся к нему электрооборудованием и соединённым с ним насосом.

4. системой управления рулевым приводом называют устройство, предназначен

ное для передачи команд с ходового мостика к силовым агрегатам рулевого привода.

В состав системы управления рулевым приводом входят:

  1. Датчики и приёмники положения пера руля;

  2. Электродвигатели с насосами;

  3. органы управления электродвигателями ( кнопки, штурвал, авторулевой );

  4. кабели и трубопроводы.

4. Принцип действия руля

При установившемся прямолинейном дви­жении судна руль, находящийся в диамет

ральной плоскости, испыты­вает с обеих сторон одинаковое давление набегающих струй воды.

Рис. 254. Силы, действующие на судно при отклонении руля

При отклонении руля на угол α (рис. 254 ) равновесие нарушается. На по­верхно-

сти пера руля, обращенной к набегающему потоку, силы давле­ния увеличиваются.

Примем, что равнодействующая сила R давления воды на перо руля приложена

в центре площади пера руля и перпендикулярно его плоскости.

Равнодействующая сила R может быть разложена на дне составляющие х и y по взаимно перпендикулярным осям, одна из которых располагается по линии курса судна, а другая - нормально к ней.

Поместим в центр тяжести судна - в точку О - две взаимно уравновешивающиеся силы у1 и у2, равные и параллель­ные боковой силе у.

Силы у1 и у составляют пару сил, плечо которой примерно можно считать равным половине длины судна L. Они обра­зуют момент, поворачивающий судно в сторону перекладки руля

Мпов = у = у b ( 7.1 ),

Этот момент и определяет пово­рот судна при отклонении руля.

Сила у2, называемая силой дрейфа, сносит судно боком во внешнюю сторону описываемой им дуги и создает из-за наличия метацентрической высоты крен судна.

Сила х создает дополнительное сопротивление движению судна ( тормозит его ).

Таким образом, задача поворота судна сводится к перекладке пера руля в необходимую сторону на угол, определяющий нужную эффективность управляющего воздействия.

Обобщенная сила R одновременно создает противодействующий момент на баллере руля, который явля­ется нагрузкой для электропривода.

5. Нагрузочные диаграммы рулеых электроприводов

Нагрузочной диаграммой называют график зависимости момента на баллере руля

от угла поворота пера руля, т.е. М ( α ).

Эти диаграммы строят для трех харакитерных ьрежимов работы судна, а именно:

1. режим при ходе судна по курсу;

2 .маневренный режим;

  1. режим при заднем ходе судна.

Для построения диаграмм используют формулы М ( α ), которые приведены

ниже.

После построения и анализа эти диаграммы используют для расчета мощности эле

ктродвигателя рулевого привода.

Рассмотрим особенности нагрузочных диаграмм для разных режимов работы судна более подробно.

Наиболее напряженным является режим манев­рирования, так как руль перекла-

дывается на максимальные углы и на баллере возникают максимальные моменты сопро

тивления.

Для правильной эксплуатации рулевого ЭД, а также для выбора его мощности необходимо знать его нагрузочную диаграмму при работе в наиболее напряженном режиме. Учитывая специфику работы ЭД в рулевых машинах с механической и гидравлической передачей, нагрузочные диаграммы рассмотрим для каждой из них.

Электроприводы с механической передачей

Нагрузочная характе­ристика рулевого исполнительного ЭД представляет собой зависи­мость момента на валу ЭД от угла поворота руля: М (α). Момент на валу ЭД определяется моментом нагрузки на баллере руля и потерями на трение в механизме передачи, которые обусловлены данной нагрузкой.

При прямом ходе пера руля момент ЭД

М = М / ( ιη ), (7.2)

где ι -передаточное число механической передачи;

η - прямой КПД переда­чи.

Передаточное число и КПД определяют как произведения соот­ветствующих значений каждого элемента передачи.

При обратном ходе пера руля момент ЭД

М = М η' / ι , (7.3)

где η' = 2 – 1 / η - обратный КПД передачи.

Так как передачи РЭП всегда содержат самотормозящий эле­мент, то прямой и обратный КПД не равны ( ηη' ), причем η' < 0.

При обратном ходе пера руля отрицательный момент на баллере руля и отрица

тельный КПД обусловливают согласно формуле (40) положительный момент на валу ЭД. Иначе говоря, несмотря на стремление пера руля самому повернуться в направлении пе

реклад­ки, т. е. диаметрали, ЭД все же приходится работать в двигательном режиме, преодолевая сопротивление трения в элементах передачи, расположенных между валом ЭД и самотормозящимся элементом.

Построение точных нагрузочных диаграмм аналитическим пу­тем весьма затруд

нительно, в частности из-за того, что КПД передачи — величина переменная, завися-

щая от нагрузки.

Поэтому для практических расчетов удовлетворяются приближенными на­грузоч-

ными диаграммами ( рис.255 ).

Рис. 255. Приближенные нагрузочные диаграммы рулевого электропривода:

а – для простого руля; б – для балансирного и полубалансирного рулей;

в – при заднем ходе

Максимальный момент М при прямом ходе руля и переднем ходе судна определяют по формуле ( 7.2 ), подставляя в нее КПД, соответствующий наибольшей нагрузке М (этот КПД обычно известен).

Момент М при обратном ходе пера руля и при переходе через диаметральную плоскость принимают равным ( 0,1…0,3 ) М . Это же значение момента принимается на участке от 0 до α для балансирных рулей. Нижний предел относится к простым рулям, а верхний - к балансирным и полубалансирным.

Это объясняется тем, что трение в ненагруженном приводе не зависит от типа руля, в то время как у рулей с балансирной частью значения М значительно снижены и для получения того же значения М следует брать большую часть от М .

Изменение же момента на участках от α до α = 0 для простых рулей и до α для балансирных принимают прямолиней­ным.

При заднем ходе судна плечо сил давления по сравнению с передним ходом увеличивается, что способствует увеличению моментов на баллере.

Однако при практи­ческих расчетах РЭП ограничиваются лишь нагрузочными диаграм­мами рулевого устройства при переднем ходе, так как из-за умень­шенной скорости заднего хода, обычно принимаемой υ = ( 0,5…0,7 ) υ , значение М < М .

Для морских судов максимальное значение угла перекладки руля α = 30...35°.

Это объясняется тем, что при углах, больших 35°, момент на баллере резко возрастает. Это означает, так же резко возрастает мощность электродвишателя рулевого устройства.

Между тем, на практике для обеспечения управленирем судна даже в наиболее тя-

желом режиме – режиме маневрирования, впоєне достаточно перекладывать руль на углы не более 30…35°.

На боевых кораблях максимальное значение угла перекладки руля α = 40...45°, что объясняется необходимостью повышенной маневренности кораблей в боевых услови-

ях.