Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБщ_ металл_2002.doc
Скачиваний:
341
Добавлен:
19.09.2019
Размер:
12.93 Mб
Скачать

2. Слиток спокойной стали

Структура слитка спокойной стали, выявляемая травлением его продольного осевого разреза, представлена на рис. 152. Слиток имеет следующие структурные зоны, отличающиеся формой кристаллов и их размерами: тонкая наружная корка из мелких равноосных кристалликов; зона вытянутых крупных столбчатых кристаллов; центральная зона крупных неориентированных кристаллов и зона мелких неориентированных кристаллов внизу слитка, имеющая конусообразную форму ("конус осаждения").

Наружная зона образуется в момент соприкосновения жидкой стали с холодными стенками изложницы. Резкое переохлаждение металла вызывает образование очень большого числа зародышей и их быстрый рост, в связи с чем кристаллы не успевают вырасти до значительных размеров и принять определенную ориентацию. Толщина корковой мелкокристаллической зоны невелика (6–15 мм), поскольку охлаждение жидкого металла с большой скоростью длится очень недолго.

В дальнейшем условия теплоотвода изменяются и формируется новая кристаллическая зона. Существенно уменьшается скорость охлаждения, так как отвод тепла замедляют корка затвердевшего металла, нагрев стенок изложницы и воздушный зазор, образующийся между стенками изложницы и слитком вследствие его усадки. Вместе с тем теплоотвод остается строго направленным, поскольку тепло отводится кратчайшим путем, т.е. перпендикулярно стенкам изложницы.

Вследствие замедления теплоотвода уменьшается переохлаждение и новых кристаллов почти не образуется. Продолжается рост кристаллов корковой зоны, причем растут главные оси кристаллов, направленные перпендикулярно стенке изложницы (поверхности охлаждения). Главные оси с иным направлением "выклиниваются", т.е. прекращают свой рост после встречи с опережающими их осями, перпендикулярными стенке изложницы (подобное опережение объясняется тем, что путь роста кристалла по нормали всегда короче, чем у

505

наклонно направленного) Поэтому продолжают расти лишь кристаллы, главные оси которых направлены перпендикулярно поверхности изложницы и, таким образом, формируется зона столбчатых кристаллов, вытянутых параллельно направлению теплоотвода. В крупных слитках с большим поперечным сечением наблюдается отклонение кристаллов к головной части слитка (к тепловому центру слитка). По мере утолщения слоя затвердевшего металла и прогрева стенок изложницы отвод тепла замедляется, и скорость роста столбчатых кристаллов постепенно снижается; они перестают расти после встречи с неориентированными кристаллами в средней части слитка.

Образование крупных неориентированных кристаллов в осевой части слитка объясняется условиями теплоотвода здесь, отличными от тех, что были при затвердевании столбчатых кристаллов. Из-за большой толщины слоя затвердевшей стали и нагрева стенок изложницы отвод тепла от жидкого металла осевой части слитка идет очень медленно; поэтому нет заметного перепада температур между затвердевшей и жидкой фазой и переохлаждения жидкой фазы, отсутствует и направленный теплоотвод, так как металл здесь удален от всех стенок изложницы примерно на одинаковое расстояние. В таких условиях вся масса жидкого металла медленно остывает до температуры кристаллизации и после ее достижения во всем объеме жидкой фазы зарождаются кристаллы Поскольку нет существенного переохлаждения, количество вновь образующихся кристаллов невелико, и поэтому они вырастают до значительных размеров. Из-за отсутствия направленного теплоотвода кристаллы не имеют определенной ориентировки и получаются равноосными.

Образование "конуса осаждения" в нижней части слитка обычно объясняют опусканием на дно изложницы кристаллов, зародившихся в объеме жидкого металла у фронта кристаллизации, а также обломившихся под воздействием потоков жидкого металла непрочных ветвей столбчатых кристаллов Это опускание кристаллов происходит в силу разности плотностей затвердевшего и жидкого металла.

Структурная неоднородность слитков затрудняет получение стальных изделий с одинаковыми механическими свойствами в различных частях. В слитке наименее прочной является зона параллельных, относительно слабо связанных меж-

506

ду собой, столбчатых кристаллов. Протяженность столбчатых кристаллов возрастает при увеличении перегрева жидкой стали, при росте скорости отвода тепла от затвердевшей части слитка и увеличении поперечного сечения слитка; она зависит также от состава стали. В частности, протяженные столбчатые кристаллы наблюдаются в слитках никелевой и хромоникелевой сталей.

Важной особенностью затвердевания слитка является наличие двухфазной зоны между жидким и полностью затвердевшим металлом. Это зона, где сосуществуют оси растущих кристаллов и незатвердевший металл в межосных пространствах. Протяженность двухфазной зоны тем больше, чем больше интервал кристаллизации стали, определяемый ее составом При увеличении протяженности двухфазной зоны возрастает время пребывания металла в двухфазном состоянии и сильнее развивается химическая неоднородность.

Необходимо отметить наличие в затвердевающем слитке конвективных потоков жидкого металла. У фронта кристаллизации поток направлен вниз, в осевой части слитка – вверх. Движение вниз возникает потому, что у фронта кристаллизации жидкий металл переохлажден и имеет ббльшую плотность чем остальная его масса. Скорость потоков достигает 0,35 м/с; она тем больше, чем выше перегрев жидкой стали, поскольку при этом возрастает разность в температуре и плотности металла в объеме слитка и у фронта кристаллизации. По мере затвердевания слитка величина перегрева жидкого металла, а с ней и интенсивность потоков снижаются. Наличие конвективных потоков ведет к усилению химической неоднородности слитка.

Усадочная раковина в слитке спокойной стали

В верхней части слитка находится полость – так называемая усадочная раковина (см. рис. 152). Причиной ее образования является усадка стали в процессе затвердевания, т.е. увеличение плотности при переходе из жидкого в твердое состояние. Величина усадки в зависимости от состава стали изменяется в пределах 2,0–5,3 %. Усадочная пустота в слитке, как и в любой другой кристаллизующейся отливке, всегда образуется в месте затвердевания последних порций металла Раковина бывает закрытой (см. рис 152), если в прибыльной надставке из-за недостаточной теплоизоляции

507

Рис 152 Строение слитка спокойной стали

а – продольное сечение, б – поперечное сечение, 1 – корковый слой мелких кристаллов, 2 – зона столбчатых кристаллов, 3 – зона крупных неориентированных кристаллов, 4 – усадочная раковина; 5 – конус осаждения, 6 – мост металла над раковиной

затвердевает верхний слои металла; при применении экзотермических засыпок и обогреве верха слитка усадочная раковина получается открытой. Ту часть слитка, в которой расположена усадочная раковина, отрезают при прокатке и отправляют в переплав Величину усадки, определяемую природой стали, уменьшить нельзя. Поэтому, чтобы свести обрезь металла к минимуму, усадочную раковину концентрируют в верхней части слитка и стремятся уменьшить глубину ее проникновения в слиток. Для этого в обычной практике прибегают к следующим мерам, обеспечивающим более позднее затвердевание верхней части слитка:

1) спокойную сталь, как правило, разливают в ножницы, уширяющиеся кверху. Большая масса жидкого металла в верхней части слитка способствует замедленному его охлаждению;

508

  1. теплоизолируют боковые поверхности верха слитка. Обычно для этого на изложницу устанавливают прибыльную надставку, которую при разливке как и изложницу заполняют жидким металлом. Боковые стенки надставки футерованы ог неупорами или снабжены теплоизоляционными вставками, бла годаря чему охлаждение металла здесь замедляется.

  2. после наполнения слитка поверхность жидкого металла в прибыльной надставке засыпают теплоизолирующими или ра зогревающими смесями. В качестве теплоизолирующих засыпок используют асбест, обожженный вермикулит, коксо-шлаковую смесь и др. Более эффективно применение разогревающих примесей – люнкеритов, которые представляют собой порош кообразную смесь горючих и нейтральных компонентов. В ка честве первых используют алюминий (14–28 %), ферросилиций (0–15 %), коксик или древесный уголь (0–50 %), в качестве вторых – шамот, боксит, вермикулит. В прибыльной надстав ке горючие компоненты медленно окисляются с выделением тепла, обогревающего жидкий металл, а нейтральные состав ляющие и продукты окисления образуют теплоизоляционный слой, замедляющий отвод тепла от верха слитка. Расход люнкерита составляет 0,5–2,0 кг/т стали.

При применении перечисленных мер величина головной об-рези слитков спокойной углеродистой стали составляет 12– 16 %, а для мелких слитков и легированных сталей достигает 20 % (донная обрезь слитков спокойной стали равна 1–4 %). Иногда применяют специальные методы обогрева верха слитка (см. п. 3, § 6).