Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБщ_ металл_2002.doc
Скачиваний:
341
Добавлен:
19.09.2019
Размер:
12.93 Mб
Скачать

5. Электроды и механизмы для их зажима и перемещения

Ток в плавильное пространство дуговой электропечи поступает по электродам. Выдерживать высокие температуры и сохранять в то же время достаточную прочность и хорошую электропроводность могут только изделия из углерода. Применяемые в электросталеплавильном производстве так называемые графитированные электроды изготовляют из малозольных углеродистых материалов: нефтяного или пекового кокса с добавкой связующего – каменноугольного пека. Размолотый кокс после прокаливания при ~ 1300 °С смешивают с расплавленным пеком в обогреваемых (до 150 °С) смесителях. Далее смесь прессуют в заготовки и обжигают их в га-

432

зовых печах при 1300 °С, а затем в электрических печах при температурах 2500–2700 °С, достигаемых за счет пропускания через них тока силой 60–120 кА.

Обожженные заготовки подвергают механической обработке, придавая им форму цилиндра.

Удельное электросопротивление графитированных электродов равно 8-13 мкОм • м; в соответстии с ГОСТ допустимая плотность тока для электродов диаметром от 100 до 610 мм находится в пределах от 35 до 12–14 А/см2, уменьшаясь с ростом диаметра электрода. Для высокомощных печей в последнее время организовано производство графитированных электродов с особо низким удельным электросопротивлением, допускающим в электродах диаметром 500–600 мм плотность тока до 25–30 А/см2 (вместо 12–14 А/см2 для обычных).

Диаметр электродов, см, рассчитывают по допустимой плотности тока 0ДОП, А/см2):

Х> = У4/7(тпдоп),

где /– сила тока в электроде, А.

Электроды изготавливают в виде цилиндрических секций диаметром от 100 до 610 мм и длиной до 1500 мм. Работающий на печи электрод получают соединением нескольких секций. Для этого в каждом торце секций имеется гнездо с винтовой нарезкой, куда ввинчивают ниппель, соединяющий две секции (рис. 130).

В процессе эксплуатации нижняя часть электрода окисляется и разрушается потоком электронов дуги, т.е. электрод укорачивается Поэтому с целью поддержания постоянства длины дуги электрод постепенно опускают. Когда элект-рододержатель приближается к своду, производят "перепус-

Рис 130 Соединение электродов при помощи цилиндрического (а) и конического (б) ниппеля

433

кание" электрода: разжимают электрододержатель, поднимают его вверх и захватывают (зажимают) электрод на более высоком уровне, чтобы можно было вновь постепенно опускать его по мере укорачивания. Периодически производят также "наращивание" электродов – к верху укоротившегося электрода с помощью ниппеля присоединяют очередную секцию.

Расход графитированных электродов на 1т стали составляет при основном процессе 4–9 кг, при кислом 4–6 кг.

Механизмы для зажима и перемещения электродов

Каждый из трех электродов имеет свой независимый механизм зажима и перемещения. Механизм состоит из электродфдер-жателя и устройств, обеспечивающих перемещение его с электродом в вертикальном направлении. Применяются механизмы перемещения электродов двух типов: с кареткой и с телескопической стойкой. В первом (рис. 131, а, б) электрододержатель рукавом 7 крепится к каретке 5, которая на направляющих роликах перемещается по неподвижной вертикальной стойке. Во втором (рис. 131, в) рукав 7 электро-додержателя закреплен на подвижной стойке, перемещающейся внутри полой вертикальной неподвижной стойки. Подвижную часть механизмов снабжают противовесом, что позволяет уменьшить мощность привода. Привод, перемешающий электро-

Рис. 131. Механизмы зажима и перемещения электродов с кареткой (а, б) и телескопической стойкой (в):

/ – привод; 2 – противовес; 3 – неподвижная стойка; 4 – канат; 5 – каретка; 6 – блок; 7 – рукав электрододержателя; 8 – электрод; 9 – рейка; 10 – подвижная стойка; 11 – гидроцилиндр; 12 – поршень

434

ды со скоростью 0,6–3 м/мин, может быть гидравлическим (рис. 131, в) или электромеханическим с передачей движения от электродвигателя с помощью системы канатов и блоков (рис. 131, а) или зубчатой рейки (рис. 131, б).

Электрод одержат ель служит для зажима и удержания электрода в заданном положении и для подвода к нему тока. Он состоит из рукава и закрепленных на нем головки, зажимного механизма и токоподвода. Наибольшее применение получили электрододержатели с пружинно-пневматическим механизмом зажима электрода. Конструктивное исполнение электрододержателей отличается многообразием, но в зависимости от способа зажима электрода в головке их можно свести к двум разновидностям.

В одной (рис. 132, а) головка выполнена в виде кольца или полукольца и подвижной нажимной колодки. Электрод в рабочем положении зажат в кольце колодкой за счет усилия пружины. Если нужно освободить электрод, то в пневмо-цилиндр подают воздух, поршень и рычажный механизм сжимают пружину, перемещают колодку вправо, освобождая электрод. Во второй разновидности (рис. 132, б) головка состоит из неподвижной колодки и хомута, охватывающего электрод. Электрод прижат к токоведущей колодке с помощью хомута за счет усилия пружины, передаваемого рычажной системой 7. При подаче воздуха в пневмоцилиндр хомут смещается влево, освобождая электрод. На новых высокомощных печах вместо пружинно-пневматических устанавливают схожие с ними пружинно-гидравлические механизмы зажима электродов: общий вид такого механизма представлен на рис. 129.

Рис. 132. Схема электрододержателей:

1 – полукольцо; 2 – электрод; 3 – колодка; 4 – шток; 5 – пружина; 6 – пневмоцилиндр; 7 – система рычагов; 8 – хомут; 9 – рукав электрододержателя; 10 – каретка

435

Головка электрически изолирована от рукава; на средних и крупных печах элементы головки охлаждают водой. Ток к головке подается с помощью шин или труб, закрепленных на изоляторах сверху рукава.

Рукав, изготовляемый в виде толстостенной трубы или сварной коробчатой балки, соединяет головку с кареткой (см. рис. 131, а, б) или с подвижной телескопической стойкой (см. рис. 131, в).

За рубежом широко применяют так называемые токоведу-щие электрододержатели. В них рукав выполнен в виде полой прямоугольного сечения штанги из алюминия, служащей также токоподводом от гибких кабелей до головки электродоДержа-теля; алюминий используют в связи с его высокой электропроводностью. При этом не требуются токоподводы из медных водоохлаждаемых труб (рис. 129, 71а).