Скачиваний:
761
Добавлен:
09.12.2013
Размер:
6.47 Mб
Скачать

2. Легочный кровоток

Из 5 л крови, протекающих через легкие за 1 мин, в легочных капиллярах одномоментно находятся и участвует в газообмене только 70—100 мл. Этот небольшой объем крови образует на альвеоло-капиллярной мембране пленку площадью 50-100 м2 и толщиной в один эритроцит. Кроме того, для обеспечения полноценного газообмена каждый капилляр контактирует не с одной, а с несколькими альвеолами.

Рис. 22-14. Влияние силы тяжести на растяжимость альвеол при вертикальном положении человека

Емкость капилляров легких относительно постоянна, но общий внутрилегочный объем крови может изменяться от 500 до 1000 мл. Значительное увеличение сердечного выброса или объема циркулирующей крови хорошо переносится и не сопровождается большими колебаниями давления благодаря пассивной дилатации уже открытых сосудов и, возможно, дополнительному подключению сосудов, до этого находившихся в спавшемся состоянии. Внутрилегочный объем крови незначительно увеличивается при каждом вдохе (при самостоятельном дыхании) и во время сердечной систолы. Переход из горизонтального в вертикальное положение сопровождается уменьшением внутрилегочного объема крови (оно может достигать 27 %); положение Тренделенбурга оказывает противоположный эффект. Изменение емкости сосудистого русла в большом круге кровообращения также влияет на объем крови в легких: сужение периферических вен приводит к смещению крови из большого круга в малый, а при их расширении происходит обратное перераспределение. Таким образом, легкие играют роль резервуара для системного кровообращения.

В регуляции легочного сосудистого тонуса местные факторы более значимы, чем вегетативная нервная система. Гипоксия мощный стимул легочной вазоконстрикции (в противоположность сосудорасширяющему действию гипоксии в большом круге кровообращения). Вазоконстрикция происходит как при гипоксии в легочной артерии (в смешанной венозной крови), так и при альвеолярной гипоксии, однако стимулирующий эффект последней более выражен. Этот феномен возникает либо благодаря прямому действию гипоксии на легочные сосуды, либо за счет преобладания выработки сосудосуживающих лейкотриенов над продукцией сосудорасширяющих простагландинов. Возможно, гипоксия подавляет образование оксида азота (NO). Легочная гипоксическая вазоконстрикция — важнейший физиологический механизм, уменьшающий внутрилегочное шунтирование и предотвращающий гипоксемию. Гипероксия не оказывает существенного влияния на легочное кровообращение у здоровых людей. Гиперкапния и ацидоз вызывают легочную вазоконстрикцию, а гипокапния — вазодилатацию.

Распределение легочного кровотока

Легочный кровоток так же неравномерен, как и вентиляция. Независимо от положения тела, в нижерасположенные отделы легких поступает больше крови, чем в вышерасположенные. В результате действия силы тяжести создается градиент внутрисосудстого давления, составляющий 1 см вод. ст. на каждый сантиметр высоты легкого. Давление в малом круге кровообращения низкое (гл. 19), поэтому сила тяжести имеет значительное влияние на легочный кровоток. Каждое легкое условно можно разделить на три зоны — в зависимости от соотношения альвеолярного (Рл), артериального (Ра) и венозного (Pv) давлений (рис. 22-15). Зона 1 — это верхняя зона, представляющая собой альвеолярное мертвое пространство, потому что здесь давление в альвеолах сжимает легочные капилляры и кровоток отсутствует. В средней зоне (зона 2) легочный капиллярный кровоток имеет прерывистый характер, зависящий от артериально-альвеолярного градиента давления. В зоне 3 легочный капиллярный кровоток непрерывен и определяется артериально-венозным градиентом давления.

Рис. 22-15. Модель, демонстрирующая неравномерность распределения легочного кровотока в трех зонах легкого

Вентиляционно-перфузионные отношения

В норме альвеолярная вентиляция (V) составляет 4 л/мин, легочный капиллярный кровоток (Q) — 5 л/мин, а их соотношение V/Q, которое называют вентиляционно-перифузионным соотношением, соответственно 0,8. Для отдельной легочной единицы (комплекс "альвеола-капилляр") V/Q может варьироваться от 0 (отсутствие вентиляции) до бесконечности (отсутствие кровотока); первое состояние представляет собой внутрилегочный шунт, второе альвеолярное мертвое пространство. В отдельных легочных единицах V/Q варьируется от 0,3 до 3,0, но в большинстве случаев близко к 1,0 (рис. 22-17А). И кровоток, и вентиляция возрастают от верхушек легких к основаниям, но кровоток — в большей степени, поэтому в апикальных отделах легких V/Q выше, чем в базальных (рис. 22-17Б).

Соотношение V/Q в различных зонах легкого определяют эффективность оксигенации венозной крови и удаления из нее углекислого газа. Кровь, оттекающая от участков легких с малой величиной V/Q, характеризуется низким парциальным давлением кислорода и высоким парциальным давлением углекислого газа; и по газовому составу она напоминает смешанную венозную кровь. Поступление такой крови в системный кровоток вызывает снижение РаО2 и повышение РаСО2. Этот эффект гораздо сильнее выражен для РаО2, чем для РаСО2; очень часто РаСО2 даже снижается из-за рефлекторного увеличения вентиляции, обусловленного гипоксией. К сожалению, компенсаторный рост вентиляции не приводит к существенному улучшению оксигенации в участках с нормальными величинами V/Q, потому что оттекающая оттуда кровь конечных легочных капилляров уже максимально насыщена кислородом.

Соседние файлы в папке Клиническая анестезиология (Морган)