
- •1Врач-анестезиолог, отделение общей анестезиологии, Кливлендский клинический фонд, Кливленд, Огайо, сша.
- •Классификация нервных волокон
- •Электромиография и исследование нервно-мышечной проводимости
- •1Вместо лидокаина можно использовать хлоропрокаин.
- •1В состав гидрокодонсодержащих препаратов входит также и ацетаминофен (викодин, др.).
- •1В состав оксикодонсодержащих препаратов может входить ацетаминофен (перкоцет) или аспирин (перкодан).
- •1В состав некоторых пропоксифенсодержащих препаратов входит ацетаминофен (дарвоцет).
- •1В большинстве случаев авторы не рекомендуют проведение постоянной поддерживающей инфузии.
- •Раздел IV
- •1. Частота сердечных сокращений
- •2. Ударный объем
- •1. Функциональные кривые желудочка
- •2. Оценка систолической функции
- •Фракция выброса
- •3. Оценка диастол ической функции
- •Эндотелиальные факторы
- •Анатомия и физиология коронарного кровообращения
- •1. Анатомия
- •2. Факторы, определяющие величину коронарного кровотока
- •3. Кислородный баланс в миокарде
- •Потребность миокарда в кислороде
- •I. Наджелудочковые аритмии
- •II. Желудочковые аритмии
- •2. Выбор анестетиков и вспомогательных средств:
- •1. Общие принципы
- •2. Премедикация
- •1. Митральный стеноз
- •2. Митральная недостаточность
- •3. Пролапс митрального клапана
- •4. Аортальный стеноз
- •5. Гипертрофическая кардиомиопатия
- •6. Аортальная недостаточность
- •7. Трикуспидальная недостаточность
- •Гипоплазия левых отделов сердца
- •1. Обструктивные поражения
- •2. Простые шунты
- •3. Сложные шунты
- •Внесердечные заболевания
- •Гипогликемия
- •1Частота импульсов автоматически изменяется в зависимости от потребности в сердечном выбросе.— Примеч. Пер.
- •1. Преиндукционный период
- •2. Индукция анестезии
- •3. Предперфузионный период
- •4. Перфузионный период
- •5. Завершение ик
- •6. Постперфузионный период
- •7. Послеоперационный период
- •Анестезия при трансплантации сердца
- •1. Тампонада сердца
- •2. Констриктивныи перикардит
- •Расслаивание аорты
- •1. Аэробный метаболизм
- •2. Анаэробный метаболизм
- •3. Влияние анестезии на клеточный метаболизм
- •1. Грудная клетка и дыхательная мускулатура
- •2. Трахеобронхиальное дерево
- •3. Кровообращение и лимфоток в легких
- •4. Иннервация
- •1.Эластическое сопротивление
- •2. Легочные объемы
- •3. Неэластическое сопротивление
- •4. Работа дыхания
- •5. Влияние анестезии на механику дыхания
- •1. Вентиляция
- •2. Легочный кровоток
- •3. Шунты
- •4. Влияние анестезии на газообмен
- •Напряжение газов в альвеолах, артериальной и венозной крови
- •1.Кислород
- •Высокий альвеолярно-артериальный градиент по кислороду
- •2. Углекислый газ
- •1.Кислород
- •2. Углекислый газ
- •1. Дыхательные центры
- •2. Центральные рецепторы
- •3. Периферические рецепторы
- •4. Влияние анестезии на регуляцию дыхания
- •Состояния, при которых необходима раздельная вентиляция легких
- •Тяжелая гипоксемия при заболевании одного легкого
- •1. Опухоли
- •2. Легочные инфекции
- •3. Бронхоэктазы
- •1. Предоперационный период
- •2. Интраоперационный период
- •3. Послеоперационный период
- •Анестезия при торакоскопических операциях
- •Легочный лимфангиоматоз
- •1. Предоперационный период
- •2. Интраоперационный период
- •3. Послеоперационный период
- •1. Церебральное перфузионное давление
- •2. Ауторегуляция мозгового кровообращения
- •3. Внешние факторы
- •Внутричерепное давление
- •Влияние анестетиков и вспомогательных средств на цнс
- •1. Испаряемые анестетики
- •Мк и внутричерепной объем крови
- •2. Закись азота
- •1.Для индукции анестезии
- •2. Вспомогательные средства
- •3. Вазопрессоры
- •4. Вазодилататоры
- •5. Миорелаксанты
- •Патологическое пристрастие к алкоголю и наркотическим препаратам
- •Как проводят эст?
- •Неосмотическая секреция адг
- •Гиперосмоляльность и гипернатриемия
- •Гипернатриемия при низком содержании натрия в организме
- •Гипоосмоляльность и гипонатриемия
- •Гипонатриемия с повышенной осмоляльностью плазмы
- •Застойная сердечная недостаточность
- •Внепочечные потери
- •Тяжелая физическая нагрузка
- •Изолированное снижение секреции калия в дистальном отделе нефрона
- •Повышенное поступление калия
- •Гиперкальциемия
- •Клинические проявления гиперкальциемии
- •1.Гемолитические реакции
- •2. Негемолитические иммунные реакции
- •Нитропруссид
- •Кислоты и основания
- •Сопряженные пары и буферы
- •Клинические нарушения
- •Компенсаторные механизмы
- •Нервно-мышечные нарушения
- •Травмы и заболевания грудной клетки
- •Болезни плевры
- •Обструкция дыхательных путей
- •Наследственные нарушения обмена веществ
- •Центральная стимуляция дыхания
- •Хлоридчувствительный метаболический алкалоз
- •1. Антагонисты альдостерона
- •2. Неконкурентные калийсберегающие диуретики
- •Сердечно-сосудистая система
- •Предоперационное обследование
- •Миорелаксанты
- •Предоперационный период
1. Грудная клетка и дыхательная мускулатура
Грудная клетка содержит два легких, каждое из которых заключено в собственную плевру. Верхняя часть грудной полости невелика по размерам, в ней располагаются трахея, пищевод и кровеносные сосуды. Основание грудной полости образовано диафрагмой — главной дыхательной мышцей. При сокращении диафрагмы ее купол опускается на 1,5-7 см и содержимое грудной клетки (легкие) растягивается. Движения диафрагмы обычно обеспечивают 75 % изменения объема грудной полости. Вспомогательная дыхательная мускулатура также увеличивает объем грудной клетки и способствует растяжению легких, воздействуя на ребра. Первые десять пар ребер соединяются сзади с позвонками и, направляясь вниз и изгибаясь кпереди, прикрепляются к грудине. Движения ребер вверх и наружу приводят к увеличению объема грудной клетки.
В норме диафрагма и, в меньшей степени, наружные межреберные мышцы отвечают за вдох; выдох происходит пассивно. При возрастании дыхательных усилий в акт дыхания вовлекаются также грудино-ключично-сосцевидные, лестничные и грудные мышцы. Грудино-ключично-сосцевидные мышцы помогают поднимать грудную клетку, тогда как лестничные мышцы предотвращают смещение верхних ребер внутрь во время вдоха. Грудные мышцы способствуют увеличению объема грудной клетки, когда руки упираются в неподвижную опору. Выдох в норме осуществляется пассивно в положении лежа на спине, но становится активным в положении стоя, а также при возрастании дыхательных усилий. Выдох облегчают некоторые мышцы живота (прямые, наружные и внутренние косые и поперечная) и внутренние межреберные мышцы. Они помогают движению ребер вниз.
Кроме обычно рассматриваемой дыхательной мускулатуры, для процесса дыхания важны также некоторые мышцы глотки, обеспечивающие проходимость верхних дыхательных путей (гл. 5). Тоническая и рефлекторная активность подбородочно-язычной мышцы при вдохе позволяет удерживать язык на определенном расстоянии от задней стенки глотки. Тоническая активность мышцы, поднимающей нёбную занавеску, мышцы, напрягающей нёбную занавеску, нёбно-глоточной и нёбно-язычной мышц предотвращает за-падение мягкого нёба, особенно в положении лежа на спине.
2. Трахеобронхиальное дерево
Трахеобронхиальное дерево обеспечивает проведение потока газа в альвеолы. Увлажнение и фильтрация вдыхаемого воздуха осуществляется в верхних дыхательных путях (в носу, во рту и в глотке). Дихотомическое деление (каждый бронх разветвляется на два меньших бронха), начинающееся с трахеи и заканчивающееся в альвеолярных мешочках, включает 23 порядка, или генерации (рис. 22-1). При каждом делении количество дыхательных путей приблизительно удваивается. Каждый альвеолярный мешочек содержит в среднем 17 альвеол. Общее количество альвеол составляет около 300 млн, у взрослого человека они формируют огромную площадь газообмена — 50-100 м2.
Рис. 22-1. Дихотомическое ветвление дыхательных путей (С разрешения Из: Weibel E. R. Morphometry of the Human Lung Springer-Verlag, 1963.)
При каждом делении элементов трахеоброн-хиального дерева характер эпителия их слизистой оболочки и подлежащих структур постепенно меняется. Эпителий переходит от реснитчатого столбчатого к кубическому и затем к плоскому альвеолярному. Газообмен может осуществляться только через плоский эпителий, который появляется в дыхательных бронхиолах (бронхи 17-19-го порядка). Стенки дыхательных путей постепенно теряют хрящевую основу (в бронхиолах) и гладкую мускулатуру. Утрата хрящевой основы приводит к тому, что с уменьшением диаметра проходимость дыхательных путей становится зависимой от радиального растяжения, обусловленного эластическими структурами окружающих тканей. Вследствие этого диаметр мелких дыхательных путей определяется общим объемом легких.
Реснички столбчатого и кубического эпителия синхронно движутся таким образом, что слизь, вырабатываемая железами дыхательных путей,
а также бактерии и частицы, подлежащие удалению, продвигаются вверх по направлению к полости рта.
Альвеолы
Размер альвеол определяется силой тяжести и объемом легких. Средний диаметр альвеолы составляет 0,2 мм. При вертикальном положении тела наиболее крупные альвеолы располагаются в верхушках легких, самые маленькие — у основания. При вдохе разница в объеме альвеол уменьшается.
Каждая альвеола находится в тесном контакте с сетью легочных капилляров. Стенки альвеолы устроены асимметрично (рис. 22-2). В респираторной (тонкой) части стенки альвеолы капиллярный эндотелий и альвеолярный эпителий разделены только их клеточными и базальной мембранами. В нереспираторной (толстой) части стенки альвеолы капиллярный эндотелий отделен от альвеолярного эпителия легочным интерстициальным пространством. Легочное интерстициальное пространство содержит эластин, коллаген и, возможно, нервные волокна. Газообмен происходит в тонкой части альвеолокапиллярной мембраны толщиной < 0,4 мкм. Толстая сторона (1-2 мкм) обеспечивает альвеоле опору.
Рис. 22-2. Легочное интерстициальное пространство с капилляром, проходящим между двумя альвеолами. Капилляр выпячивается в просвет расположенной справа альвеолы через ее тонкую (газообменную) стенку. Интерстициальное пространство сливается с толстой стенкой левой альвеолы. (С разрешения. Из: Nunn J. F. Applied Respiratory Physiology, 3rd ed. Butterworths, 1987.)
Дыхательный эпителий содержит по меньшей мере два типа клеток. Пневмоциты I типа — это плоские клетки, образующие между собой так называемые плотные (1 нм) контакты. Плотные контакты предотвращают попадание крупных онкотически активных молекул (например, альбумина) внутрь альвеол. Не столь многочисленные пневмоциты II типа — это клетки округлой формы, имеющие большое количество цитоплазматических включений (пластинчатые тельца). Пластинчатые тельца содержат сурфактант — вещество, играющее чрезвычайно важную роль в механике дыхания. В отличие от пневмоцитов I типа, пневмоциты II типа способны делиться (при необходимости) с образованием пневмоцитов I типа. Пневмоциты II типа устойчивы к токсическому действию кислорода.
В нижних дыхательных путях имеются также альвеолярные макрофаги, тучные клетки, лимфоциты и клетки APUD-системы, у курящих людей — нейтрофилы.