
- •Введение
- •Глава 1. Случайная величина. Законы распределения случайных величин
- •1.1. Понятие случайной величины
- •1.1.1. Виды измерений
- •1.1.2. Единицы измерений, используемые в маркшейдерском деле
- •1.1.3. Случайная величина
- •1.1.4. Вероятность события
- •1.2. Вариационные ряды
- •1.3. Характеристики вариационных рядов
- •1.3.1. Средние значения признака
- •1.3.2. Дисперсия и среднее квадратическое отклонение
- •1.3.3. Показатели вариации
- •1.3.4. Медиана и мода
- •1.3.5. Асимметрия и эксцесс
- •1.3.6. Условные моменты q-го порядка
- •1.4. Графическое изображение вариационных рядов
- •1.4.1. Гистограмма распределения
- •1.4.2. Полигон распределения
- •1.4.3. Кумулята
- •1.4.4. Огива
- •1.5. Сглаживание эмпирических данных
- •1.5.1. Графическое сглаживание
- •1.5.2. Аналитическое сглаживание
- •1.5.2.1. Сглаживание линейной функцией
- •1.5.2.2. Сглаживание показательной функцией
- •1.5.2.3. Сглаживание степенной функцией
- •1.5.2.4. Сглаживание параболической функцией
- •1.5.2.5. Сопоставление результатов сглаживания
- •1.5.2.6. Краткие рекомендации к подбору сглаживающих функций
- •1.6. Законы распределения случайных величин
- •1.6.1. Задание закона распределения
- •1.6.2. Равномерное распределение
- •1.6.3. Нормальное распределение
- •1.6.4. Распределение Стьюдента
- •1.6.5. Распределение Шарлье
- •1.6.6. Биномиальный закон распределения
- •1.6.7. Распределение Пуассона
- •1.6.8. Распределение
- •1.6.9. Показательное распределение
- •1.7. Проверка согласования эмпирического распределения с теоретическим
- •1.7.1. Критерии согласия
- •1.7.2. Критерий согласия к.Пирсона
- •1.7.3. Критерий согласия в.И.Романовского
- •1.7.4. Критерий согласия а.Н.Колмогорова
- •1.7.5. Сопоставление эмпирических распределений с нормальным распределением упрощенными способами
- •1.7.5.1. Использование показателей асимметрии и эксцесса
- •1.7.5.2. Критерий Шарлье
- •1.7.5.3. Критерий Шовенэ
- •1.7.5.4. Способ Линдеберга
- •1.7.5.5. Критерий знаков
- •1.7.6. Сопоставление эффективности критериев
- •Глава 2. Статистический анализ выборочных совокупностей случайной величины
- •2.1. Понятие генеральной и выборочной совокупностей
- •2.2. Оценивание параметров распределения
- •2.2.1. Понятие оценки параметра распределения
- •2.2.2. Интервальная оценка математического ожидания
- •2.2.3. Оценка эмпирического значения дисперсии
- •2.2.4. Сравнение средних двух или нескольких выборок
- •2.2.5. Определение необходимого объема выборок
- •2.3. Дисперсионный анализ
- •2.3.1. Однофакторный дисперсионный анализ
- •2.3.2. Двухфакторный дисперсионный анализ
- •2.4. Корреляционный анализ
- •2.5. Регрессионный анализ
- •2.5.1. Метод наименьших квадратов
- •2.5.2. Линейная регрессия
- •2.5.3. Нелинейная регрессия
- •2.5.4. Понятие о множественной регрессии
- •Глава 3. Обработка результатов многократных измерений одной величины
- •3.1. Общие замечания
- •3.1.1. Задачи обработки результатов многократных измерений
- •3.1.2. Классификация погрешностей измерений
- •3.1.3. Свойства случайных погрешностей
- •3.1.4. Среднее арифметическое
- •3.2. Оценка точности ряда равноточных однородных измерений
- •3.2.1. Средняя квадратическая погрешность
- •3.2.2. Средние квадратические погрешности функций измеренных величин
- •3.2.3. Порядок обработки ряда равноточных измерений
- •3.2.4. Порядок обработки ряда двойных равноточных измерений
- •С учетом (3.26) и (3.27) получим
- •3.3. Об учете систематических погрешностей в измерениях
- •3.4. Обработка ряда неравноточных однородных измерений
- •3.4.1. Понятие о весе результата измерения
- •3.4.2. Погрешность единицы веса
- •3.4.3. Порядок обработки ряда неравноточных измерений
- •3.4.4. Порядок обработки ряда двойных неравноточных измерений
- •3.5. Допуски результатов измерений и их функций
- •Глава 4. Уравнивание геодезических построений
- •4.1. Задачи уравнительных вычислений
- •4.2. Коррелатный способ уравнивания
- •4.3. Параметрический способ уравнивания
- •4.4. Приемы решения систем линейных уравнений
- •4.4.1. Способ последовательной подстановки
- •4.4.2. Способ матричных преобразований
- •4.4.3. Решение систем линейных уравнений по алгоритму Гаусса
- •4.4.4. Способ краковянов
- •4.5. Геометрические условия в геодезических построениях
- •4.5.1. Условие фигуры
- •4.5.2. Условие горизонта
- •4.5.3. Условие суммы углов
- •4.5.4. Условие дирекционных углов
- •4.5.5. Условие сторон
- •4.5.6. Условие полюса
- •4.5.7. Условие координат
- •4.6. Примеры коррелатного способа уравнивания
- •4.6.1. Уравнивание углов в полигоне
- •4.6.2. Уравнивание системы нивелирных ходов с несколькими узловыми точками
- •4.6.3. Уравнивание полигонометрического хода
- •4.6.4. Уравнивание системы полигонометрических ходов с одной узловой точкой
- •4.6.5. Уравнивание системы полигонометрических ходов с двумя узловыми точками
- •4.6.6. Уравнивание триангуляции
- •4.6.7.Уравнивание триангуляции по условию координат
- •4.6.8. Уравнивание линейно-угловой сети
- •4.7. Примеры уравнивания параметрическим способом
- •4.7.1. Уравнивание углов в полигоне
- •4.7.2. Система нивелирных ходов с несколькими узловыми точками
- •4.7.3. Уравнивание полигонометрического хода
- •4.7.4. Система полигонометрических ходов с двумя узловыми точками
- •4.7.5. Уравнивание направлений в триангуляции
- •4.8. Нестрогие способы уравнивания
- •4.8.1. Примеры раздельного уравнивания
- •4.8.1.1. Полигонометрический ход
- •4.8.2. Способ эквивалентной замены
- •4.8.3. Способ полигонов в.В.Попова
- •4.8.4. Способ последовательных приближений
- •4.9. Оценка точности уравненных элементов и их функций
- •4.9.1. Общие положения
- •4.9.2. Оценка точности при уравнивании коррелатным способом
- •4.9.3. Оценка точности при уравнивании параметрическим способом
- •Списоклитературы
- •Предметный указатель
4.9. Оценка точности уравненных элементов и их функций
4.9.1. Общие положения
Оценка точности уравненных элементов и их функций заключается в определении средних квадратических погрешностей результатов измерений и функций измеренных величин после выполнения процедуры уравнивания.
Среднюю квадратическую погрешность любой величины можно определить по формуле
,
(4.238)
где
- средняя квадратическая погрешность
единицы веса; p
– вес определяемой величины.
Обе величины, входящие в правую часть формулы (4.238) обычно неизвестны, поэтому по материалам уравнивания находят как значение средней квадратической погрешности единицы веса, так и вес оцениваемой (уравниваемой) величины. Здесь следует иметь в виду, что вес измеренной и вес той же, но уравненной величины – не одно и то же. Тем более и веса функций уравненных величин, зависящих от входящих в нее аргументов со своими весами. Отношение весов Р уравненных значений измеренных величин к весам р измеренных величин примерно равно отношению общего числа измерений n к числу необходимых измерений k, т.е.
.
(4.239)
При определении погрешности единицы веса можно использовать формулу из теории погрешностей, в которую вместо истинных погрешностей или уклонений от среднего значения подставляют значения полученных невязок W:
,
(4.240)
где n – число невязок однородной величины, равных числу условных уравнений. Часто для оценки используют все возникающие условные уравнения (N > r).
Пользуясь материалами уравнивания, погрешность единицы веса легко можно найти по формуле
,
(4.241)
где v – значения поправок к измеренным величинам, имеющим вес pi; n – число использованных поправок, т.е. число измеренных однородных величин (углов, расстояний, превышений, пролетов и т.п); k – число необходимых измерений (n – k = r – число избыточных измерений).
При
уравнивании коррелатным способом
величину
можно получить несколькими методами:
- по значениям поправок, полученных по результатам уравнивания (т.н. способ при помощи таблиц коэффициентов);
- по формуле
,
(4.242)
где W – невязки; k – значения коррелат;
- по схеме решения нормальных уравнений: к нормальным уравнениям коррелат добавляют еще одно уравнение:
…………………………………………
, (4.243)
………………………………………….
в котором значение играет роль неизвестного. Т.е. получается система из (r+1) уравнения с тем же числом (r+1) неизвестных. Такие уравнения решают совместно по разработанному алгоритму (приемы решения таких уравнений будут пояснены далее).
При уравнивании параметрическим способом значение тоже можно определить несколькими путями:
- по значениям поправок (с использованием таблицы коэффициентов);
- по формуле
;
(4.244)
- в схеме решения нормальных уравнений, присоединив уравнение (4.244) к системе нормальных уравнений:
……………………………………………
(4.245)
……………………………………………
Данная система имеет (k+1) уравнение со столькими же неизвестными, т.е. решается исключением полученных значений поправок τj к параметрам tj. Уравнения решают по разработанному алгоритму (пример решения таких уравнений представлен далее).