
- •Змістовий модуль 1. Структура та кінематика механізмів
- •1.2. Основні пробеми дисципіни тмм, її розділи і місце серед інших дисциплін. Історія розвитку.
- •Мiсце тмм серед iнших дисциплiн
- •1.3. Загальні визначення: машина, механізм. Види машин і механізмів.
- •Класифiкацiя машин
- •Машинний агрегат
- •1.4. Компоненти механізму.
- •Структурна будова механізмів
- •Абсолютно тверде тіло в просторі
- •К ласифікація кінематичних пар
- •2.2. Кінематичні ланцюги та їхня класифікація.
- •К інематичні ланцюги
- •2.3. Структурні формули кінематиних ланцюгів. Сімейства механізмів.
- •2.4 Принцип утворення механізмів.
- •Лекція 3. Класифікація механізмів План лекції.
- •Г рупи Ассура
- •3.2. Класифікація механізмів. Послідовність структурного аналізу.
- •Р ізновиди механізмів іі кл.Іі пор.
- •3.3. Зайві ступені вільності та пасивні умови зв'язку.
- •К улачковий механізм із зайвим ступенем вільності
- •Важільний механізм з пасивними зв'язками
- •3.4. Замінюючі механізми.
- •З амінюючі механізми
- •Лекція 4.
- •План лекції:
- •4.2. Синтез кривовшипно повзунного механізму.
- •П обудова кривошипно-повзунного механізму
- •С хема до визначення r і l
- •С хема до визначення r ; l і e.
- •С хема до визначення r і l.
- •4.3. Синтез кривошипно-коромислового механізму.
- •К ривошипно-коромисловий механізм
- •4.4. Синтез кулісного механізму.
- •К улісний механізм
- •Лекція 5.
- •План лекції:
- •Г рафіки переміщеная вхідної ланки
- •5.2. Визначення положень ланок та траєкторій, що описують характерні точки ланок.
- •П обудова траєкторії точки
- •5.3. Кінематичні діаграми механізмів. Масштаби діаграм.
- •П обудова кінематичних діаграм
- •К ривошишо-коромисловий механізм
- •Лекція 6.
- •План лекції:
- •Г рупа Ассура іі кл., іі пор., і- виду.
- •6.2. Визначення прискорень окремих точок груп Ассура та кутових прискорень ланок.
- •Г рупа Ассура іі кл., іі пор., і виду
- •6.3. Плани швидкостей важільного механізму.
- •6.4. Плани прискорень важільного механізму.
- •Лекція 7.
- •План лекції:
- •7.2. Аналітична кінематика кривошипно-коромислового механізму.
- •К ривошипно-коромисловий механізм
- •7.3. Аналітична кінематика кривошипно-повзунного механізму.
- •Кривошипно-повзунного механізм
- •7.4. Аналітична кінематика кулісного механізму.
- •К улісний механізм
- •К улачкові механізми
- •К онструкції штовхачів
- •З амикання кулачкових механізмів
- •8.2. Закони руху веденої ланки. Фазові кути.
- •З акони руху веденої ланки
- •8.3. Кінематичний аналіз кулачкових механізмів.
- •К інематичний аналіз кулачкових механізмів методом діаграм
- •8.3.1. Аналіз методом діаграм.
- •8.3.2. Аналіз методом планів.
- •9.2. Кут тиску та кут передачі руху.
- •9.3. Динамічний синтез кулачкових механізмів.
- •9.3.1. Визначення початкового радіуса профілю кулачка для кулачкових механізмів з роликовим штовхачем.
- •К улачковий механізм з роликовим штовхачем
- •9.3.2.Визначення початкового радіуса профілю кулачка для кулачкових механізмів з тарілчастим штовхачем.
- •10.2.Циліндрична фрикційна передача
- •Ц иліндрична передача
- •10. 3.Конічна фрикційна передача
- •К онічна передача
- •Л обовий варіатор
- •З убчасте зачеплення
- •11.2 Евольвента кола та її властивості.
- •11. 3. Основні розміри циліндричних зубчастих коліс.
- •Ц иліндричні зубчасті колеса
- •11.4 Геометрія евольвентного зачеплення.
- •11. 5. Косозубі циліндричні колеса. Основні параметри.
- •К онічна зубчаста передача
- •Профілювання конічної передачі
- •12.2 Черв’ячна передача.
- •Ч ерв’ячна передача
- •12.3 Гвинтові зубчасті колеса .
- •12. 4. Поняття про нові види зубчастого зачеплення.
- •Зачеплення Новікова
- •План лекції
- •13. 2. Зубчасті механізми з рухомими осями. Планетарні та диференціальні механізми.
- •З убчасті механізми з рухомими осями
- •Зубчасті механізми типу редуктора Давида
- •13. 3 Кінематика диференціальних та планетарних механізмів
- •13.4. Визначення передаточних відношень планетарних механізмів графічним методом.
- •13. 5 Поняття про хвильову передачу. Кінематика.
- •14. 2 Методи нарізання зубів зубчастих коліс
- •14.3. Підрізування зубів. Найменше число зубів на колесі.
- •14.4 Виправлення /корегування/ зубчастих коліс.
- •Змістовий модуль 3. Динамічний аналіз механізмів Лекція 15.
- •15.2. Сили, що діють в механізмах.
- •15.3. Механічні характеристики машин.
- •15.4. Режими руху механізмів.
- •Лекція 16. Тертя в поступальних кінематичних парах
- •16.2. Тертя на похилій площині.
- •16.3. Тертя в клинчастому і циліндричному жолобі.
- •16.4. Тертя в гвинтовій парі.
- •Лекція 17. Тертя ковзання в обертальних та кочення у вищих кінематичних парах.
- •17.2. Тертя гнучкої ланки по нерухомому барабану.
- •17.3. Тертя кочення у вищих кінематичних парах.
- •17.3.1. Переміщення вантажу на катках.
- •17.3.2. Переміщення вантажу на візку.
- •Лекція 18.
- •18.2. Визначення сил інерції ланок плоских механізмів.
- •18.3. Зведення сил інерції ланки до центру коливання.
- •18.4. Метод заміщених точок.
- •19.2. Умова статичної визначеності кінематичного ланцюга.
- •19.3. Кінетостатика груп Ассура п класу п порядку.
- •19.3. 1. Кінетостатика груп Ассура і виду.
- •19.3.2. Кінетостатика груп Ассура II виду.
- •19.3.3. Кінетостатика груп Ассура III виду.
- •19.4. Кінетостатика механізму і класу.
- •Лекція 20.
- •20.2. Визначення коефіцієнту корисної дії при послідовному з'єднанні механізмів.
- •20.3. Визначення коефіцієнту корисної дії при паралельному з'єднанні механізмів.
- •Паралельне з'єднання механізмів
- •20.4. Коефіцієнт корисної дії кінематичних пар.
- •21.2. Зведені сили і моменти.
- •21.3. Теорема м.Є. Жуковського.
- •21.4. Зведена маса і зведений динамічний момент інерції механізму.
- •Лекція 22.
- •22.2. Нерівномірність руху механізмів.
- •22.3. Середня швидкість руху. Коефіцієнт нерівномірності руху.
- •23.2. Графік зведеного динамічного моменту інерції механізму.
- •23.3. Діаграма енергомас.
- •Лекція24.
- •24.2. Зрівноважування обертових тіл.
- •24.3. Зрівноважування механізмів.
- •24.4. Статичне і динамічне балансування обертових тіл.
- •24.5. Віброзахист машин.
Лекція 16. Тертя в поступальних кінематичних парах
План лекції :
16.1. Види тертя. Тертя ковзання сухих тіл.
16.2. Тертя на похилій площині.
16.3. Тертя в клинчастому І циліндричному жолобі. 16. 4. Тертя, в гвинтовій парі.
16. 1. Види тертя. Тертя ковзання сухих тіл.
При вирішенні багатьох питань, які відносяться до динаміки механізмів і машин, поряд з рушійними силами і силами виробничих опорів приходиться враховувати також і сили тертя.
Загальний опір, що виникає в місцях дотику двох тіл, які переміщаються одне відносно одного, називається силою тертя. Тертя - це складне явище, для пояснення якого створені дві гіпотези: механічна і молекулярна.
За сучасною гіпотезою, що має змішанний характер, процес тертя при ковзанні поверхонь є результатом не лише механічної взаємодії поверхонь, але і результатом дії молекулярних сил.
Ми не будемо зупинятися на сучасних теоріях, які пояснюють природу тертя, а зупинимося тільки на викладенні елементарних відомостей з теорії тертя, необхідних для вирішення простих задач теорії механізмів. В загальному тертя розрізняють таких видів:
а/ чисте - сухе;
б/ граничне, якщо поверхні розділяє шар мастила завтовшки не більше ніж 0,1 Мкм;
в/ рідинне, поверхні певністю розділені шаром мастила;
г/ напівсухе - одночасно сухе і граничне;
д/ напіврідинне - одночасно рідинне і граничне.
По видам рухів розрізняють:
а/ тертя ковзання;
б/ тертя кочення.
Сила Ff сухого тертя, яка виникає при відносному ковзанні одного тіла відносно іншого, пропорційна силі FN нормального тиску і визначається із рівняння Амонтона-Кулона
Ff = f FN,
де f - коефіцієнт тертя ковзання.
Коефіцієнт тертя f залежить від матеріалів поверхонь що труться, їх стану та обробки, мащення та інших факторів.
Не дивлячись на це, коефіцієнт тертя f для конкретних матеріалів приймається сталим.
Сила тертя завжди напрямлена в сторону, протилежну швидкості відносного ковзання тіла.
П
овна
реакція
FR
ланки
2 на
ланку
1 визначається
додаванням
нормальної
реакції
FN
і
сили
тертя
Ff
/рис.16.1/.
Визначення кута тертя
Рис.16.1
Повна реакція FR відхилена від нормальної реакції FN на кут φ, який називається кутом тертя ковзання
/16.2/
Таким чином, коефіцієнт тертя дорівнює тангенсу кута тертя.
16.2. Тертя на похилій площині.
Знайдемо рушійну силу FР, необхідну для рівномірного переміщення тіла 1, на яке діє гравітаційна сила Fg /сила тяжіння/, вгору на похилій площині 2, якщо коефіцієнт тертя ковзання рівний f . Похила площина і рушійна сила FР складають з горизонталлю кути, відповідно α і β /рис.16.2,а/.
При рівномірному переміщенні тіла 1 на похилій площині 2 вгору на нього діють: рушійна сила FР, сила тяжіння Fg, нормальна реакція FN та сила тертя Ff .
Знайдемо повну реакцію FR шляхом додавання нормальної реакції FN та сили тертя Ff . Реакція FR складає з нормаллю до площини кут тертя φ.
Складемо векторне рівняння всіх сил, що діють на тіло 1:
/16.3/
Тіло на похилій площині
а - переміщення тіла вгору; б - план сил
Рис. 16. 2
Побудуємо план сил /рис. 16. 2, б/. Отримаємо замкнутий силовий трикутник із відповідними кутами при вершинах. На основі теореми синусів можна записати:
/16.4/
Звідси знайдемо рушійну силу
/16.5/
Якщо сила FР горизонтальна, кут β=0, то рівняння /16.5/ прийме вигляд:
/16.6/
Розглянемо випадок, коли тіло 1 рухається рівномірно донизу /рис.16.З,а/.
В цьому разі побудова відрізняється від попередньої тим, що сила тертя Ff напрямлена вверх, а повна реакція FR відхиляється на кут тертя φ, не ліворуч від нормалі /рис. 16. 2, а/, а праворуч від неї /рис.16.3,а/.
Для цього випадку досить у формулах /16.5/ і /16.6/ замінити кут φ на –φ. Тоді будемо мати:
/16.7/
/16.8/
Тіло
на похилій площині
а - переміщення тіла донизу; б - план сил
Рис. 16. З
Рівняння /16.8/ також випливає із /рис. 16. З, б/.
При відсутності тертя /кут φ = 0/ рівняння /16.8/ набере вигляду:
/16.9/