Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation - Northrop.pdf
Скачиваний:
222
Добавлен:
10.08.2013
Размер:
4.41 Mб
Скачать

228

Analysis and Application of Analog Electronic Circuits

jω

j 0.408/(RC)

D

C

A

 

 

B

5.049/(RC)

0.643/(RC) 0.308/(RC)

 

FIGURE 5.21

Root-locus diagram of the NFB phase-shift oscillator. Note that the oscillation frequency is approximately 0.408/RC r/s.

Although the root-locus diagram can be used to find the frequency of oscillation and the critical dc gain (29), in this case the application of the Barkhausen criterion saves the work of plotting the root locus to scale and doing a graphical solution. It is not necessary to factor the cubic polynomial when using the Barkhausen method; Figure 5.21 illustrates the root-locus diagram for the NVF phase-shift oscillator. Pole positions and locus break point from real axis are not to scale. In practice, a PSO can be tuned by varying a triple-ganged parallel-plate capacitor. Oscillator range can be changed by switching the three resistors in the β filter. The early (1950s) Hewlett–Packard 200CD audio oscillator used a PSO with this tuning scheme, as well as a tungsten filament lamp for amplitude control. Of course, the 200CD oscillator used vacuum tubes, not op amps.

5.5.3The Wien Bridge Oscillator

Another commonly used oscillator that is effective in the millihertz to hundreds of kilohertz range is the Wien bridge oscillator shown in Figure 5.22. This oscillator uses PVF through a simple R–C filter. The filter’s transfer function is:

β(s) =

V1

=

1 (G + sC)

=

s (RC)

(5.63)

Vo

1 sC + R + 1 (G + sC)

s2 + s3 (RC) + 1 (RC)2

The quadratic denominator of β(s) is easily factored. The roots are at s1 = −2.618/(RC) and s2 = −0.382/(RC). Now the gain of the second op amp is

© 2004 by CRC Press LLC

Feedback, Frequency Response, and Amplifier Stability

229

 

RF

 

(×1 Buffer)

Rb

 

(V1)

Vo

IOA

 

IOA

 

V1

 

V1

 

C

R Vo = AvV1

C

R

Rb

RbQ

Rbo

V1

0

 

 

0

V1Q

FIGURE 5.22

Top: schematic of a PFB Wien bridge oscillator. The buffer amp is not really necessary if a high input resistance op amp is used for the output. As in the case of the phase-shift oscillator, the oscillation amplitude is regulated by nonlinear feedback from a lamp. Bottom: the lamp’s resistance as a function of the RMS voltage, V1, across it.

simply Av = Vo /V1 = (1 + RF/Rbo ) for very small V1. When V1 increases as the oscillations grow, Rb increases, thus decreasing Av to the critical value

that balances the oscillator’s poles on the axis at ±jωo; Avcrit = (1 + RF/RbQ). The Wien bridge oscillator’s loop gain in vector form is:

AL

(s) =

+s Av

(RC)

(5.64)

(s s1 )(s s2 )

 

 

 

The WB oscillator’s root-locus diagram is, strangely, a circle, as shown in Figure 5.23. From the RL magnitude criterion, it is possible to write:

 

AL (o )

 

=

 

C

 

Av (RC)

= 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

B

 

1 (RC)Av 1 (RC)

 

 

(5.65)

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[

 

 

 

 

 

 

]

+ 1 (RC)2

[

 

 

 

]

(RC)2

 

2.618

(RC) 2

 

0.382

(RC) 2 + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¬

 

 

 

 

 

 

 

 

 

 

 

1 =

 

 

 

 

1 (RC)2 A

 

 

= Av

3

(5.66)

 

 

 

 

 

 

 

 

 

v

 

 

 

 

 

 

1 (RC)2 2.80249 1.07048

© 2004 by CRC Press LLC