Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБщ_ металл_2002.doc
Скачиваний:
491
Добавлен:
19.09.2019
Размер:
12.93 Mб
Скачать

§ 3. Выплавка стали в основных дуговых электропечах

1. Шихтовые материалы электроплавки

Основной составляющей шихты (75–100 %) электроплавки является стальной лом. Лом не должен содержать цветных металлов и должен иметь минимальное количество никеля и меди; желательно, чтобы содержание фосфора в ломе не превышало 0,05 %. При более высоком содержании фосфора продолжительность плавки возрастает. Лом не должен быть сильно окисленным (ржавым). Ржавчина – гидрат оксида железа, с ней вносится в металл много водорода. Лом должен быть тяжеловесным, чтобы обеспечивалась загрузка шихты в один прием (одной корзиной). При легковесном ломе после частичного расплавления первой порции шихты приходится вновь открывать печь и подсаживать шихту, что увеличивает продолжительность плавки.

В последние годы расширяется применение металлизован-ных окатышей и губчатого железа – продуктов прямого вос-

445

становления обогащенных железных руд. Они содержат 85-93% Fe, основными примесями являются оксиды железа, SiO2 и А12О3.

Отличительная особенность этого сырья – наличие углерода от 0,2–0,5 до 2 % и очень низкое содержание серы, фосфора, никеля, меди и других примесей, обычно имеющихся в стальном ломе. Это позволяет выплавлять бталь, отличающуюся повышенной чистотой от примесей.

Переплав отходов легированных сталей позволяет экономить дорогие ферросплавы. Поэтому эти отходы собирают и хранят рассортированными по химическому составу в отдельных закромах. Их используют при выплавке сталей, содержащих те же легирующие элементы, что и отходы.

Для повышения содержания углерода в шихте используют чугун, кокс и электродный бой.

Основное требование к чугуну – минимальное содержание фосфора;, с тем, чтобы не вносить много фосфора в шихту малых (< 40 т) печей вводят не более 10 % чугуна, а в большегрузных не более 25 %.

В качестве шлакообразующих в основных печах применяют известь, известняк, плавиковый шпат, боксит, шамотный бой; в кислых печах– кварцевый песок, шамотный бой, известь.

В качестве окислителей используют железную руду, прокатную окалину, агломерат, железорудные окатыши, газообразный кислород.

К шлакообразующим и окислителям предъявляются те же требования, что и при других сталеплавильных процессах. В частности, известь должна содержать более 90 % СаО, менее 2 % SiO2, менее 0,1 % S и быть свежеобожженной, чтобы не вносить в металл водород. Железная руда должна содержать менее 8 % SiO2, поскольку он понижает основность шлака, менее 0,05 % S и менее 0,2 % Р; желательно применять руду с размером кусков 40–100 мм, поскольку такие куски легко проходят через слой шлака и непосредственно реагируют с металлом.

В плавиковом шпате, применяемом для разжижения шлака, содержание CaF2 должно превышать 85 %.

В электросталеплавильном производстве для легирования и раскисления применяются практически все известные ферросплавы и легирующие.

446

2. Традиционная технология с восстановительным периодом

Технология плавки с окислительным и восстановительным периодами или традиционная технология применяется в течение десятилетий на печах вместимостью « 40 т для выплавки высококачественных легированных сталей. Эту технологию называют также двухшлаковой, а процесс плавки – двухшла-ковым, поскольку по ходу плавки вначале (периоды плавления и окислительный) в печи наводят окислительный шлак, то есть содержащий много оксидов железа, а затем его сливают и в восстановительном периоде наводят новый (второй) шлак, не содержащий оксидов железа. До недавнего времени (до широкого внедрения процессов внепечной обработки) плавка в электродуговых печах по этой технологии была единственным способом получения легированных высококачественных сталей и так и е стали назывались сталями "электропечного сортамента". Высокое качество металла обеспечивалось за счет того, что в окислительном периоде создавались условия для удаления до очень низких содержа-

Рис. 136. Технологические операции электроплаики.

а – заправка; б – загрузка шихты; в – плавление; г – скачивание шлака; д – печь после расплавления шихты; е – выпуск стали; 1 – заправочная машина; 2 – загрузочная корзина; 3 – стальной лом; 4 – гребок для скачивания шлака, 5 – шлаковый ковш (чаша); 6 – сталеразливочный ковш

447

ний фосфора и для дегазации металла (удаления растворенных водорода и азота за счет кипения ванны), а в восстановительном периоде – условия для получения низких содержаний кислорода и серы и соответственно оксидных и сульфидных неметаллических включений, а также для ввода в металл легирующих добавок без их значительного угара.

Плавка состоит из периодов: 1) заправка печи; 2) загрузка шихты; 3) плавление; 4) окислительный период; 5) восстановительный период; 6) выпуск стали. На рис. 136 показан ряд выполняемых в процессе плавки операций.

Заправка заключается в том, что после выпуска плавки на поврежденные участки набивки пода или на всю ее поверхность забрасывают магнезитовый порошок (иногда порошок с добавкой пека или смолы), что позволяет поддерживать постоянной толщину изнашивающегося слоя набивки. Заправку ведут вручную и с помощью различных заправочных машин. Одна из них состоит из бункера, под которым имеется горизонтально расположенный вращающийся диск; машину опускают (см. рис. 136, а) сверху в открытую печь и высыпающийся из бункера порошок разбрасывается диском по окружности. Длительность заправки 10–20 мин.

Загрузка шихты. При выплавке стали в малых и средних печах шихта на 90–100 % состоит из стального лома. Для повышения содержания углерода в шихту вводят чугун (< 10 %), а также электродный бой или кокс. Общее их количество должно быть таким, чтобы содержание углерода в шихте превышало нижний предел его содержания в готовой стали на 0,3 % при выплавке высокоуглеродистых сталей, на 0,3–0,4 % при выплавке среднеуглеродистых и на 0,5 % для низкоуглеродистых. Этот предел несколько снижается при росте емкости печи. Чтобы совместить удаление части фосфора с плавлением шихты в завалку рекомендуется давать 2–3 % извести.

Загрузку шихты ведут с помощью корзины (бадьи). Ее вводят (см. рис. 136, б) в открытую печь сверху и, раскрывая дно, высыпают шихту на подину печи. Загрузку всей шихты производят одной, а иногда двумя корзинами. Длительность загрузки одной корзины равна ~ 5 мин В корзины шихту укладывают в следующей последовательности: на дно кладут часть мелочи, чтобы защитить подину от ударов тяжелых кусков лома, затем в центре укладывают крупный

448

лом, а по периферии средний и сверху- оставшийся мелкий лом. Для уменьшения угара кокс и электродный бой кладут под слой крупного лома.

Плавление. После окончания завалки электроды опускают почти до касания с шихтой и включают ток. Под действием высокой температуры дуг шихта под электродами плавится, жидкий металл стекает вниз, накапливаясь в центральной части подины. Электроды постепенно опускаются, проплавляя в шихте "колодцы" (рис. 136, в и рис. 137, б) и достигая крайнего нижнего положения. В дальнейшем по мере увеличения количества жидкого металла электроды поднимаются, так как автоматические регуляторы поддерживают длину дуги постоянной.

Плавление ведут при максимальной мощности трансформатора. На печах вместимостью 25 т и более для ускорения плавления осуществляют вращение ванны. Когда электроды проплавят в шихте три "колодца", свод и электроды приподнимают, печь поворачивают сначала в одну сторону на 40°, проплавляют колодцы в новых местах, а затем поворачивают печь в другую сторону на 80°. Таким образом проплавляют девять колодцев.

В период плавления необходимо обеспечить раннее образование шлака, предохраняющего металл от насыщения газами и науглероживания электродами. С этой целью, если в завалку не давали известь, в проплавляемые электродами колодцы несколькими порциями присаживают известь (1–3 % от массы металла).

Во время плавления происходит окисление составляющих шихты, формируется шлак, происходит частичное удаление в шлак фосфора и серы. Окисление идет за счет кислорода воздуха, окалины и ржавчины, внесенных металлической шихтой. За время плавления полностью окисляется кремний, 40–60 % марганца, частично окисляется углерод и железо. В

Рис 137 Характер плавления шихты в высокомощной печи (а) и в печи с невысокомощным трансформатором {б)

29-4050 449

формировании шлака наряду с продуктами окисления (SiO2, MnO, FeO) принимает участие оксид кальция извести. Шлак к концу периода плавления имеет примерно следующий состав, %: 35-40 СаО; 15-25 SiO2; 8-15 MgO; 5-20 FeO; 5-10 MnO; 3–7 A12O3; 0,5–1,2 P2O5. В зоне электрических дуг за время плавления испаряется от 3 до 6 % металла, преимущественно железа.

Для ускорения плавления иногда применяют газокислородные горелки, вводимые в рабочее пространство через свод или стенки печи. За счет тепла, выделяющегося от сжигания газа, сокращается длительность плавления и расход электроэнергии (на 10–15 %). С этой же целью часто применяют продувку кислородом, вводимым в жидкий металл после расплавления 3/4 шихты с помощью фурм или стальных футерованных трубок. Окисление железа, а также марганца, кремния и других примесей металла газообразным кислородом протекает с выделением значительного количества тепла, которое ускоряет расплавление лома. При расходе кислорода 4–6 м3/т длительность плавления сокращается на 10–20 мин.

Продолжительность периода плавления определяется в первую очередь мощностью трансформатора и составляет от 1,2 до 3,0 ч. Расход электроэнергии за время плавления составляет 430–480 кВт • ч/т.

Окислительный период. Задачи окислительного периода плавки: а) уменьшить содержание в металле фосфора до 0,01-0,015 %; б) уменьшить содержание в металле водорода и азота; в) нагреть металл до температуры, близкой к температуре выпуска (на 120–130 °С выше температуры ликвидуса); г) окислить углерод до нижнего предела его требуемого содержания в выплавляемой стали. Особо важную роль в этом периоде играет процесс окисления углерода, поскольку с образующимися при этом пузырями СО удаляются растворенные в металле водород и азот, и пузыри вызывают перемешивание ванны, ускоряющее нагрев металла и удаление в шлак фосфора.

Окисление примесей ведут, используя либо железную руду (окалину), либо газообразный кислород.

Окислительный период начинается с того, что из печи сливают 65–75 % шлака, образовавшегося в период плавления. Шлак сливают не выключая ток, наклонив печь в сторону рабочего окна на 10–12° (см. рис. 136, г). Слив шлака

450

производят для того, чтобы удалить из печи перешедший в шлак фосфор. Удалив шлак, в печь присаживают шлакообра-зуюшие: 1–1,5 % извести и при необходимости 0,15–0,25 % плавикового шпата, шамотного боя или боксита.

После сформирования жидкоподвижного шлака в ванну в течение всего окислительного периода вводят порциями железную руду с известью либо ведут продувку кислородом; печь для слива шлака в течение периода наклонена в сторону рабочего окна. Присадка руды или продувка кислородом вызывает интенсивное окисление углерода с выделением пузырей СО, вспенивающими шлак, в результате чего он стекает из печи через порог рабочего окна.

Общий расход руды составляет 3–6,5 % от массы металла. С тем, чтобы предотвратить сильное охлаждение металла, единовременная порция руды не должна быть более 0,5–1 %. Газообразный кислород вводят в металл по футерованным железным трубкам через рабочее окно или с помощью водо-охлаждаемой фурмы через отверстие в своде печи. При этом трубки должны быть погружены в металл на глубину 150–200 мм. Скорость обезуглероживания газообразным кислородом в 3–5 раз больше, чем железной рудой, что дает возможность сократить продолжительность окислительного периода на 20–30 мин. Общая длительность продувки ванны составляет 10–20 мин, расход кислорода 3–15 м3/стали. Наряду с углеродом окисляется марганец; всего за время плавления и окислительного периода окисляется 60–70 % Мп, содержащегося в шихте.

В течение всего окислительного периода идет дефосфора-ция металла по реакции:

2[P]+5(FeO)+3(CaO) = (ЗСаО • P2O5)+5Fe+767290 Дж/моль.

Для успешного протекания реакции необходимы высокие основность шлака и концентрация оксидов железа в нем, а также пониженная температура. Эти условия создаются при совместном введении в печь извести и руды. Полнота дефосфорации повышается в результате перемешивания шлака и металла при кипении и вследствие непрерывного обновления шлака (слив шлака и периодические добавки новых порций шлакообразую-щих). Коэффициент распределения фосфора между шлаком и металлом (Р2О5)/[Р] изменяется в пределах 50-100, обычно возрастая при росте основности и окисленности шлака.

451

Из-за высокого содержания оксидов железа в шлаках окислительного периода условия для протекания реакции десульфурации являются неблагоприятными, и десульфурация получает ограниченное развитие. Коэффициент распределения серы между шлаком и металлом (S)/[S] равен 3–5, а всего за время плавления и окислительного периода в шлак удаляется до 30 % серы, содержащейся в шихте.

При кипении вместе с пузырьками СО из металла удаляются водород и азот. Этот процесс имеет большое значение для повышения качества электростали, поскольку в электропечи в зоне электрических дуг идет интенсивное насыщение металла азотом и водородом. Это насыщение ускоряется в результате диссоциации молекул азота и водорода в зоне дуг, имеющих температуру свыше 4000 °С. В связи с этим электросталь обычно содержит азота больше, чем мартеновская и кислородно-конвертерная сталь.

Кипение и перемешивание обеспечивают также ускорение выравнивания температуры металла и его нагрев. За время окислительного периода необходимо окислить углерода не менее 0,2–0,3% при выплавке высокоугдеродистой стали (содержащей > 0,6 % С) и 0,3–0,4 % при выплавке средне- и низкоуглеродистой стали (нижний предел указанных значений относится к большегрузным печам).

Шлак в конце окислительного периода имеет примерно следующий состав, %: 35-50 СаО; 10-20 SiO2; 4-12 МпО; 6-15 MgO; 3-7 А12О3; 6-30 FeO; 2-6 Fe2O3; 0,4-1,5 Р2О5. Содержание оксидов железа в шлаке зависит от содержания углерода в выплавляемой марке стали; верхний предел характерен для низкоуглеродистых сталей, нижний– для высокоуглеродистых.

Окислительный период заканчивается тогда, когда углерод окислен до нижнего предела его содержания в выплавляемой марке стали, а содержание фосфора снижено до 0,010– 0,015 %. Период заканчивают сливом окислительного шлака, который производят путем наклона печи в сторону рабочего окна, а также вручную с помощью деревянных гребков, насаженных на длинные железные прутки. Полное скачивание окислительного шлака необходимо, чтобы содержащийся в нем фосфор не перешел обратно в металл во время восстановительного периода. Окислительный период длится от 30 до 90 мин.

452

Восстановительный период. Задачами периода являются: а) раскисление металла; б) удаление серы; в) доведение химического состава стали до заданного; г) корректировка температуры. Задачи решаются параллельно в течение всего восстановительного периода; раскисление металла производят одновременно осаждающим и диффузионным методами.

После удаления окислительного шлака в печь присаживают ферромарганец в количестве, необходимом для обеспечения содержания марганца в металле на его нижнем пределе для выплавляемой стали, а также ферросилиций из расчета введения в металл 0,10–0,15 % кремния и алюминий в количестве 0,03–0,1 %. Эти добавки вводят для обеспечения осаждающего раскисления металла.

Далее наводят шлак, вводя в печь известь, плавиковый шпат и шамотный бой в соотношении 5:1:1 в количестве 2–4 % от массы металла. Через 10–15 мин шлаковая смесь расплавляется, и после образования жидкоподвижного шлака приступают к диффузионному раскислению ванны. Периодически, через 10–12 мин, в печь вводят порции раскислительной , смеси из извести, плавикового шпата и раскислителя. Первые 15–20 мин в качестве раскислителя в этой смеси используют молотый кокс (углерод), далее вместо него молотый ферросилиций; иногда допускается дача порций чистого кокса или ферросилиция. На некоторых марках стали в конце восстановительного периода в состав раскислительной смеси вводят более сильные раскислители – молотый силико-кальций и порошкообразный алюминий.

Обычно расход кокса на раскисление под белым шлаком составляет 1–2 кг/т металла. Расход ферросилиция определяют с учетом того, что около 50 % кремния переходит в металл; в течение восстановительного периода содержание кремния в металле за счет присадок на шлак порошкообразного ферросилиция доводят до 0,25–0,35 % (что соответствует его содержанию в нелегированных кремнием сталях).

Суть диффузионного раскисления, протекающего в течение всего периода заключается в следующем. Поскольку раскисляющие вещества применяют в порошкообразном виде, плотность их невелика и они очень медленно опускаются через слой шлака. В шлаке протекают следующие реакции раскисления:

(FeO) + С = Fe + CO; 2(FeO) + Si = 2Fe + (SiO2) и т.п.

453

В результате содержание FeO в шлаке уменьшается и в соответствии с законом распределения (FeO)/[FeO] = const кислород (в виде FeO) начинает путем диффузии переходить из металла в шлак (диффузионное раскисление). Преимущество диффузионного раскисления заключается в том, что поскольку реакции раскисления идут в шлаке, выплавляемая сталь не загрязняется продуктами раскисления – образующимися оксидами, т.е. будет содержать меньше оксидных неметаллических включений.

По мере диффузионного раскисления постепенно уменьшается содержание FeO в шлаке и пробы застывшего шлака светлеют, а затем становятся почти белыми. Белый цвет шлака характеризует низкое содержание в нем FeO. При охлаждении такой шлак рассыпается в порошок.

Белый шлак конца восстановительного периода имеет следующий состав, %: 53-60 СаО; 15-25 SiO2; 7-15 MgO; 5-8 А12О3; 5-10 CaF2; 0,8-1,5 CaS; < 0,5 FeO; < 0,5 MnO.

Во время восстановительного периода успешно идет десульфурация, что объясняется высокой основностью шлака (CaO/SiO2 = 2,7–3,3) и низким (< 0,5 %) содержанием в нем FeO, обеспечивающими сдвиг равновесия реакции десульфура-ции

[S] + Fe + (СаО) = (CaS) + (FeO)

вправо (в сторону более полного перехода серы в шлак). Коэффициент распределения серы между шлаком и металлом (S)/[S] составляет 20-60.

В конце восстановительного периода, когда шлак и металл раскислены, проводят легирование металла элементами, имеющими значительное химическое сродство к кислороду (подробнее см. ниже).

Для улучшения перемешивания шлака и металла и интенсификации медленно идущих процессов перехода в шлак серы, кислорода и неметаллических включений в восстановительный период рекомендуется применять электромагнитное перемешивание металла.

Длительность восстановительного периода составляет 40–100 мин. За 10–20 мин до выпуска проводят, если это необходимо, корректировку содержания кремния в металле, вводя в печь кусковой ферросилиций. Для конечного раскисления за 2–3 мин до выпуска в металл присаживают

454

0,4–1,0 кг алюминия на 1 т стали, расход алюминия в этих пределах возрастает при снижении содержания углерода в выплавляемой стали. Выпуск стали из печи в ковш производят совместно со шлаком. Интенсивное перемешивание металла со шлаком в ковше обеспечивает дополнительное рафинирование – из металла в белый шлак переходят сера и неметаллические включения. По ходу плавки в экспресс-лаборатории контролируют изменение состава металла и шлака, измеряют температуру металла термопарами погружения.

Иногда восстановительный период проводят не под белым, а под карбидным шлаком, который отличается от белого наличием карбида кальция (СаС2) и более высокой основностью. При этом наведенный в начале восстановительного периода шлак раскисляют повышенным количеством кокса (2–3 кг/т), после чего печь герметизируют. При таких условиях в зоне электрических дуг идет реакция

СаО + ЗС = СаС2 + СО.

Образующийся карбид кальция является энергичным рас-кислителем, и наличие его в шлаке обеспечивает более полное, чем под белым шлаком, раскисление и десульфурацию. Выдержка под карбидным шлаком, который содержит 1,5–2,5 % СаС2, составляет 30–40 мин. Карбид кальция хорошо смачивает металл, поэтому при выпуске плавки в ковш под карбидным шлаком, металл загрязняется мелкими частичками шлака. Для предотвращения этого карбидный шлак за 20–30 мин до выпуска переводят в белый. Для этого в печь открывают доступ воздуху, открывая рабочее окно. Кислород воздуха окисляет карбид кальция с образованием СаО и СО, в результате чего карбидный шлак превращается в белый.

Порядок легирования. При выплавке легированных сталей в дуговых печах порядок легирования зависит от сродства легирующих элементов к кислороду. Элементы, обладающие меньшим сродством к кислороду, чем железо (никель, молибден), во время плавки не окисляются, и их вводят в начальные периоды плавки– никель в завалку, а молибден в конце плавления или в начале окислительного периода.

Хром и марганец обладают ббльшим сродством к кислороду, чем железо. Поэтому металл легируют хромом и марганцем после слива окислительного шлака в начале восстановительного периода.

455

Вольфрам обладает ббльшим сродством к кислороду, чем железо, он может окисляться и его обычно вводят в начале восстановительного периода. Особенность легирования вольфрамом заключается в том, что из-за высокой температуры плавления ферровольфрама (~ 2000 °С) он растворяется медленно и для корректировки содержания вольфрама в металле феррофольфрам можно присаживать в ванну не позднее, чем за 30 мин до выпуска.

Кремний, ванадий и особенно титан и алюминий обладают большим сродством к кислороду и легко окисляются. Легирование стали феррованадием производят за 15–35 мин до выпуска, ферросилицием – за 10–20 мин до выпуска. Ферро-титан вводят в печь за 5–15 мин до выпуска либо в ковш. Алюминий вводят за 2–3 мин до выпуска в печь.