
- •Общее описание печи 406
- •Часть 1.Производство чугуна и железа
- •Глава 1.Сырые материалы и их подготовка
- •§1. Железные руды
- •§2. Основные месторождения железных руд
- •§3. Марганцевые руды
- •§4. Флюсы и отходы производства
- •§5. Подготовка железных руд к доменной плавке
- •§6. Топливо
- •Глава 2. Конструкция доменной печи
- •§1. Общее описание печи
- •§2. Профиль печи и основные размеры
- •§3. Фундамент, кожух и холодильники
- •§4. Футеровка печи
- •§6. Колошниковое устройство
- •Глава 3. Доменный процесс
- •§1. Загрузка шихты и распределение материалов на колошнике
- •§2. Распределение температур, удаление влаги и разложение карбонатов
- •§3. Процессы восстановления
- •1. Восстановление железа
- •2. Восстановление марганца и выплавка марганцовистых чугунов
- •3. Восстановление кремния и выплавка кремнистых чугунов
- •4. Восстановление фосфора
- •5. Восстановление других элементов
- •§4. Образование чугуна
- •§5. Эбразование шлака и его свойства
- •§6. Поведение серы
- •§ 7. Дутье, процессы в горне и движение газов в печи
- •1. Дутье
- •2. Процессы в горне
- •3. Движение газов в печи и изменение их температуры, состава, количества и давления
- •§8. Интенсификация доменного прцесса
- •1. Нагрев дутья
- •2. Увлажнение дутья
- •3. Повышенное давление газа
- •4. Обогащение дутья кислородом
- •5. Вдувание в горн углеродсодержащих веществ
- •6. Комбинированное дутье
- •§ 9. Продукты доменной плавки
- •§ 10. Управление процессом, контроль, автоматизапще
- •§ 11. Организация ремонтов, задувка и выдувка печи
- •Глава 4. Оборудование и работа обслуживающих доменную печь участков
- •§ 1. Подача шихты в доменную печь
- •§ 2. Воздухонагреватели и нагрев дутья
- •§ 3. Очистка доменного газа
- •§ 4. Выпуск и уборка чугуна
- •§ 5. Выпуск и уборка шлака
- •Глава 5.Показатели работы доменных печей
- •§ 1. Материальный и тепловой балансы плавки
- •§ 2. Расход кокса
- •§ 3. Основные технические показатели
- •§ 1. Актуальность проблемы
- •§ 2. Процессы твердофазного восстановления железа
- •§ 3. Процессы жидкофазного восстановления (пжв)
- •§ 4. Решение проблем охраны природы и охраны труда
- •§ 1. История развития сталеплавильного производства
- •§ 2. Классификация стали
- •§ 3. Основные реакции и процессы сталеплавильного производства
- •1. Термодинамика сталеплавильных процессов
- •2. Кинетика сталеплавильных процессов
- •3. Сталеплавильные шлаки
- •4. Основные реакции сталеплавильных процессов
- •6. Неметаллические включения
- •7. Раскисление и легирование стали
- •§ 4. Шихтовые материалы сталеплавильного производства
- •§ 1. Разновидности конвертерных процессов
- •1. Конвертерные процессы с донным воздушным дутьем
- •2. Кислородно-конвертерные процессы
- •§ 2. Устройство кислородных конвертеров для верхней продувки
- •§ 3. Шихтовые материалы кислородно-конвертерного процесса
- •§ 4. Плавка в кислородном конвертере с верхней продувкой
- •1. Технология плавки
- •2. Режим дутья
- •3. Поведение составляющих чугуна при продувке
- •4. Шлаковый режим
- •5. Раскисление и легирование
- •6. Тепловой режим
- •7. Потери металла при продувке
- •8. Основные технические показатели
- •§ 5. Конвертерные процессы с донной продувкой кислородом
- •§ 6. Конвертерные процессы с комбинированной продувкой
- •6 7. Плавка с увеличенным расходом лома
- •§ 8. Передел высокофосфористых чугунов
- •§ 9. Передел пригодно легированных чугунов
- •§ 10. Экология, очистка конвертерных газов
- •§ 11. Автоматизация и контроль конвертерной плавки
- •6 12. Процессы с аргоно- и парокислородным дутьем
- •§ 13. Производство в конвертерах стали для литья
- •§ 1. Конструкция и работа мартеновской печи
- •1. Назначение и устройство отдельных элементов печи
- •§ 2. Тепловая работа и отопление мартеновских печей
- •6 3. Общая характеристика мартеновского процесса
- •1. Разновидности процесса
- •2. Особенности технологии мартеновской плавки
- •3. Шлакообразование и роль шлака в мартеновском процессе
- •§ 4. Основной мартеновский процесс и его разновидности
- •§ 5. Кислый мартеновский процесс
- •§ 7. Автоматизация работы мартеновской печи
- •§ 8. Тепловой и материальный балансы мартеновской плавки
- •Глава 4.Выплавка стали в электрических печах
- •§ 1. Устройство дуговых электропечей
- •1. Общее описание печи
- •2. Рабочее пространство печи
- •3. Рабочее пространство высокомощных водоохлаждаемых печей
- •4. Механическое оборудование печей
- •5. Электроды и механизмы для их зажима и перемещения
- •6. Электрооборудование дуговой печи
- •§ 2. Электрический режим
- •§ 3. Выплавка стали в основных дуговых электропечах
- •1. Шихтовые материалы электроплавки
- •2. Традиционная технология с восстановительным периодом
- •3. Выплавка стали методом переплава
- •5. Плавка в высокомощных водоохлаждаемых печах
- •6. Плавка с использованием металлизованных окатышей
- •7. Основные технические показатели
- •§ 4. Выплавка стали в кислых дуговых электропечах
- •§5. Электродуговые печи постоянного тока
- •§6. Работа электродуговых печвй и экология
- •§7. Выплавка стали в индукционных печах
- •1. Устройство индукционной печи повышенной частоты
- •2. Технология плавки
- •3. Плавка в вакуумных индукционных печах
- •Глава 5. Слитки и разливка стали
- •§1. Способы разливки стали. Разливка сифоном и сверху
- •§2. Кристаллизация и строение стальных слитков 1. Кристаллизация стали
- •2. Слиток спокойной стали
- •3. Слиток кипящей стали
- •4. Слиток полуспокойной стали
- •§ 3. Химическая неоднородность слитков
- •§ 6. Особенности разливки спокойной стали
- •1. Технология разливки
- •2. Защита металла в изложнице от окисления
- •3. Специальные методы теплоизоляции и обогрева верха слитка
- •17. Особенности разливки кипящей стали
- •§8. Дефекты стальных слитков
- •§1. Общая характеристика непрерывной разливки
- •1. Разновидности и преимущества способа
- •2. Основные типы унрс
- •3. Затвердевание непрерывно вытягиваемого слитка
- •§ 2. Устройство установок непрерывной разливки 1. Унрс с вытягиванием и скольжением слитка
- •2. Унрс без скольжения слитка в кристаллизаторе
- •3. Литейно-прокатные агрегаты
- •§ 4. Производительность унрс
- •§1. Общие условия
- •§ 2. Технологические основы внепечного рафинирования
- •§ 3. Современные способы вакуумирования
- •§4. Обработка металла вакуумом и кислородом
- •§5. Метод продувки инертными газами
- •§ 6. Аргонокислородная продувка
- •§7. Внепечная обработка и производство высокохромистых сталей и сплавов
- •§8. Обработка стали шлаками
- •§9. Введение реагентов в глубь металла
- •§ 10. Предотвращение вторичного окисления
- •§11. Методы отделения шлака от металла ("отсечки" шлака)
- •§ 12. Комбинированные (комплексные) методы внепечной обработки
- •§ 13. Внепбчная обработка стали
- •§ 14. Обработка стали в процессе кристаллизации
- •§ 15. Внепечная обработка стали и проблемы экологии
- •Глава 8. Комплексные технологии внепечной обработки чугуна и стали
- •§ 1. Внбдомбнная дбсульфурация чугуна
- •§ 2. Внедоменная дефосфорация чугуна
- •§ 3. Проведение обескремнивания и дефосфорации чугуна
- •§ 4. Совместное проведение операций десульфурации и дефосфорации
- •§ 5. Комплексные технологии внепечной обработки чугуна и стали
- •§ 1. Конструкции сталеплавильных агрегатов непрерывного действия (санд)
- •§ 2. Переплав металлолома
- •§ 3. Перспективы развития непрерывных процессов
- •§1. Вакуумный индукционный переплав
- •§2. Вакуумный дуговой переплав
- •§ 3. Элбктрошлаковый переплав
- •§ 4. Электронно-лучевой и плазменно-дуговой переплавы
- •§ 5. Перспективы развития переплавных процессов
- •Глава 2. Ферросплавная печь
- •§ 1. Восстановительные ферросплавные печи
- •§ 2. Рафинировочные ферросплавные печи
- •§3. Загрузка шихты в ферросплавные печи
- •Глава 5. Производство силикомарганца
- •Глава 6. Производство углеродистого феррохрома
- •Глава 7. Основы технологии производства
- •Глава 2. Металлургия меди
- •§ 1. Свойства меди и еб применение
- •§2. Сырье для получения меди
- •§ 3. Пирометаллургический способ производства меди
- •1. Подготовка медных руд к плавке
- •2. Плавка на штейн
- •3. Конвертирование медного штейна
- •4. Рафинирование меди
- •§ 1. Свойства никеля и его применение
- •§2. Сырье для получения никеля
- •§3. Получение никеля из окисленных руд
- •§4. Получение никеля
- •§1. Свойства алюминия и его применение
- •§2. Сырые материалы
- •§ 3. Производство глинозема
- •1. Способ Байера
- •2. Способ спекания
- •§ 4. Электролитическое получение алюминия
- •§ 5. Рафинирование алюминия
- •§1. Основы хлоридных методов производства металлов
- •§ 2. Производство магния
- •§ 3. Производство титана
- •§ 1. Правовые аспекты проблем охраны природы
- •Раздел X включает перечень задач, стоящих перед экологическим контролем.
- •§ 2. Основные направления охраны окружающей среды и рационального природопользования
- •§ 3. Охрана природы и металлургия.
- •§ 4. Защита воздушного бассейна
- •§ 5. Охрана водного бассейна
- •§ 6. Утилизация шлаков
- •§ 7. Использование шламов и выбросов
- •§ 8. Использование отходов смежных производств
- •§ 9. Использование вторичных энергоресурсов
- •§ 10. Использование металлургических агрегатов для переработки бытовых отходов
- •153008, Г. Иваново, ул. Типографская, 6.
§ 7. Дутье, процессы в горне и движение газов в печи
1. Дутье
Дутьем служит атмосферный воздух и зачастую воздух, обогащенный кислородом. Температура дутья в настоящее время на разных печах находится в пределах 1100–1300 °С, давление перед фурмами достигает 0,4–0,5 МПа, расход дутья на хорошо работающих печах составляет 1,6–2,3 объема печи в минуту. Его всегда стараются поддерживать максимальным, поскольку при увеличении минутного расхода дутья больше сгорает кокса и проплавляется шихты в единицу времени, т.е. возрастает производительность печи. В указанных пределах для каждой доменной печи в ходе эксплуатации находят такой допустимый расход дутья, при котором сохраняется ровный сход шихты и после превышения которого он нарушается, т.е. начинаются подвисания шихты, а также возникают локальные продувы шихты газами, т.е. их движение по отдельным каналам в шихте (канальный ход газов). На печах объемом 5000 м3 расход дутья достигает 8500м3/мин.
Дутье в доменные печи подают из воздуходувной станции от расположенных в ней воздуходувных машин (компрессоров) с приводом в виде паровой турбины и иногда с электропри-
117
водом, создающими давление дутья на выходе 0,45-0,59 МПа. При обогащении дутья кислородом последний вводят во входной патрубок воздуходувной машины.
Дутье проходит воздухонагреватели, кольцевой воздухопровод и из него поступает в верхнюю часть горна через равномерно расположенные по окружности горна 16-40 фурм. Выходной диаметр фурм составляет 140-190 мм, высов фурм (расстояние от конца фурмы до футеровки) 300-500 мм, скорость дутья на выходе из фурмы 180-240 м/мин при расходе дутья на одну фурму 170-230 м3/мин.
2. Процессы в горне
В горне доменной печи встречаются и взаимодействуют два потока: опускающаяся шихта и горновые газы. Сверху в горн опускаются твердые, нагретые до высокой температуры куски кокса, а также жидкий чугун и шлак. Извне через фурмы, расположенные в верхней части горна, поступает нагретое дутье и обычно еще углеводородсодержащие добавки. Вблизи фурм происходит процесс сжигания углерода топлива и углеводородов природного газа или мазута. Получающиеся горновые газы поднимаются вверх навстречу опускающейся шихте.
Основным и важнейшим процессом в горне является сжигание углерода кокса, которое обеспечивает:
а) выделение тепла, необходимого для нагрева шихты и газов, обеспечения процессов восстановления, расплавления чугуна и шлака и компенсации теплопотерь печи;
б) образование газа-восстановителя СО;
в) образование свободного объема вследствие превраще ния твердых кусков кокса в газ, что способствует движению шихты в печи сверху вниз.
Окисление углерода кокса происходит в сравнительно небольших по объему участках горна вблизи фурм, называемых окислительными зонами (рис. 42). Большая кинетическая энергия струй дутья вызывает циркуляцию кусков кокса перед фурмами, и они сгорают в окислительной зоне во взвешенном состоянии. Во внутренней, прилегающей к фурме части такой зоны (кислородной зоне /), углерод, реагируя с кислородом, окисляется до СО2; в периферийной (углекис-лотной //) части зоны, где кислород уже израсходован и содержится лишь СО2, углерод окисляется, реагируя с СО2,
118
Рис. 42. Схема окислительной зоны перед фурмами доменной печи
Рис. 43. Изменение состава газа и температуры в зоне горения у фурм
образуя при этом СО. Участки исчезновения СО2 представляют собой границу окислительной зоны. Таким образом, конечным продуктом окисления углерода является СО, и процесс окисления идет по следующей схеме:
С + О2 = СО2 + 402190 СО2 + С = 2СО - 166310
2
С
+ О2
= 2СО + 235880 Дж или 9830кДж/кг С.
Изменение состава газа в окислительной зоне по мере отдаления от фурм показано на рис. 43.
Размеры окислительной зоны как, вдоль оси воздушной фурмы, так и вдоль оси печи возрастают с повышением количества воздуха или, точнее, с ростом кинетической энергии струи дутья и сокращаются при увеличении давления дутья, повышении температуры дутья и концентрации кислорода в дутье. На больших печах протяженность окислительной зоны вдоль оси фурм достигает 1,7–1,9 м.
Продукт сгорания кокса- горновой газ состоит, в основном, из СО и N2. Его состав можно легко рассчитать.
Если в горении участвует сухой воздух, содержащий 79% N2 (объемн.) и 21% О2 (т.е. N2:O2 = 3,76), то реакцию можно записать так:
119
2С + О2 + 3,76N2 = 2CO + 3,76N2. В этом случае при горении получается
СО = 2
' 10°
= 34,7 % и 2 + 3,76
=
3,76-100
=
в5Ъ% 2
2 + 3,76
Состав горнового газа изменится, если вдувать дутье, обогащенное кислородом. Например, при содержании в дутье 30% кислорода объемное отношение N2 к О2 равно 70 : 30 = 2,36 и реакция горения записывается так:
2С + О2 + 2,36N2 = 2CO + 2,36N2. Горновой газ будет при этом содержать: СО = ^–-Ш = 45,9%;
2 + 2,36
N«" т^Ьгш -54Д%-
т.е. в нем возрастает содержание СО и снижается N2; кроме того, уменьшается объем горнового газа вследствие уменьшения количества азота (с 3,76 моля до 2,36 моля на 2 моля СО).
Дутье всегда содержит немного влаги, которая в горне разлагается углеродом: Н2О + С = СО + Н2 - 124870 Дж. Поэтому в горновом газе всегда есть немного водорода; например, при содержании в дутье влаги в количестве 1 % (объемн.) (8,035 г/м*) в горновом газе находится 0,8 % Н2 и соответственно снижается содержание азота и оксида углерода.
При вдувании в горн природного газа он неполностью сгорает по реакции: СН4 + 0,5О2 = СО + 2Н2 + 37250 Дж и в горновом газе заметно возрастает содержание Н2 (до 8–15 % и более). Заметно увеличивается также объем горновых газов потому, что при сгорании метана на единицу углерода образуются три моля продуктов горения (СО и 2Н2), а при сгорании кокса по реакции С + 0,5О2 = СО лишь один моль СО; объем продуктов сгорания на единицу углерода возрастает в 1,7 раз. Вдувание в горн мазута, состоящего как и природный газ из углеводородов, характеризуется теми же процессами, что и вдувание природного газа.
120
При воздушном дутье температура в центре окислительной зоны, где идут экзотермические реакции окисления углерода до СО2, достигает 1900-2000 °С, а на границе окислительной зоны снижается до 1650-1600 °С вследствие протекания эндотермических реакций СО2 + С = 2СО. За пределами окислительной зоны по мере отдаления от нее температура снижается, так как протекают реакции прямого восстановления, идущие с поглощением тепла; в центральной части горна температура чаще всего находится в пределах 1400–1500 °С.
Добавки к дутью кислорода, природного газа и влаги изменяют температурное состояние горна. Увеличение количества влаги в дутье вызывает снижение температур в зоне горения и в горне, поскольку, как отмечалось, при попадании в горн Н2О разлагается углеродом с поглощением тепла. Влияние кислорода и природного газа можно оценить, используя формулу, по которой рассчитывают теоретическую температуру горения Гт топлива. В общем виде применительно к сгоранию кокса в горне доменной печи эта формула записывается следующим образом:
где Qr– теплота сгорания топлива (кДж/кг); Qa– энтальпия (теплосодержание) нагретого дутья (кДж/м3); / – теплосодержание углерода топлива, поступающего в зону горения (кДж/кг); V и с – объем и теплоемкость продуктов сгорания [м3/кг С и кДж/(м3 • К)].
При добавке кислорода к дутью объем продуктов сгорания V, как ранее отмечалось, уменьшается, что в соответствии с приведенной выше формулой вызывает повышение Тт и температур в горне. Вдувание природного газа ведет (см. выше) к увеличению объема продуктов сгорания V, и соответственно, к понижению Тт и температур в горне; это снижение вызывается также тем, что при сгорании природного газа на один моль сгорающего углерода выделяется меньше тепла (37250 Дж), чем при сгорании углерода кокса (117940 Дж), т.е. в формуле расчета Тт уменьшается величина QT.
Во всех случаях температура газов в центре горна не должна быть ниже 1400-1450 °С, так как при более низких температурах заметно понижается температура продуктов плавки и ухудшается деоульфурация чугуна.
121
Таким образом, добавка влаги к дутью вызывает снижение температуры горновых газов и небольшое увеличение содержания в них водорода; обогащение дутья кислородом – уменьшение объема горновых газов, повышение их температуры и содержания в них СО; вдувание природного газа, так же как и других углеводородов, – увеличение объема горновых газов, снижение их температуры и существенное их обогащение водородом. Эти изменения оказывают как положительное, так и отрицательное влияние на доменный процесс, что рассмотрено в § 8 этой главы.