
- •Общее описание печи 406
- •Часть 1.Производство чугуна и железа
- •Глава 1.Сырые материалы и их подготовка
- •§1. Железные руды
- •§2. Основные месторождения железных руд
- •§3. Марганцевые руды
- •§4. Флюсы и отходы производства
- •§5. Подготовка железных руд к доменной плавке
- •§6. Топливо
- •Глава 2. Конструкция доменной печи
- •§1. Общее описание печи
- •§2. Профиль печи и основные размеры
- •§3. Фундамент, кожух и холодильники
- •§4. Футеровка печи
- •§6. Колошниковое устройство
- •Глава 3. Доменный процесс
- •§1. Загрузка шихты и распределение материалов на колошнике
- •§2. Распределение температур, удаление влаги и разложение карбонатов
- •§3. Процессы восстановления
- •1. Восстановление железа
- •2. Восстановление марганца и выплавка марганцовистых чугунов
- •3. Восстановление кремния и выплавка кремнистых чугунов
- •4. Восстановление фосфора
- •5. Восстановление других элементов
- •§4. Образование чугуна
- •§5. Эбразование шлака и его свойства
- •§6. Поведение серы
- •§ 7. Дутье, процессы в горне и движение газов в печи
- •1. Дутье
- •2. Процессы в горне
- •3. Движение газов в печи и изменение их температуры, состава, количества и давления
- •§8. Интенсификация доменного прцесса
- •1. Нагрев дутья
- •2. Увлажнение дутья
- •3. Повышенное давление газа
- •4. Обогащение дутья кислородом
- •5. Вдувание в горн углеродсодержащих веществ
- •6. Комбинированное дутье
- •§ 9. Продукты доменной плавки
- •§ 10. Управление процессом, контроль, автоматизапще
- •§ 11. Организация ремонтов, задувка и выдувка печи
- •Глава 4. Оборудование и работа обслуживающих доменную печь участков
- •§ 1. Подача шихты в доменную печь
- •§ 2. Воздухонагреватели и нагрев дутья
- •§ 3. Очистка доменного газа
- •§ 4. Выпуск и уборка чугуна
- •§ 5. Выпуск и уборка шлака
- •Глава 5.Показатели работы доменных печей
- •§ 1. Материальный и тепловой балансы плавки
- •§ 2. Расход кокса
- •§ 3. Основные технические показатели
- •§ 1. Актуальность проблемы
- •§ 2. Процессы твердофазного восстановления железа
- •§ 3. Процессы жидкофазного восстановления (пжв)
- •§ 4. Решение проблем охраны природы и охраны труда
- •§ 1. История развития сталеплавильного производства
- •§ 2. Классификация стали
- •§ 3. Основные реакции и процессы сталеплавильного производства
- •1. Термодинамика сталеплавильных процессов
- •2. Кинетика сталеплавильных процессов
- •3. Сталеплавильные шлаки
- •4. Основные реакции сталеплавильных процессов
- •6. Неметаллические включения
- •7. Раскисление и легирование стали
- •§ 4. Шихтовые материалы сталеплавильного производства
- •§ 1. Разновидности конвертерных процессов
- •1. Конвертерные процессы с донным воздушным дутьем
- •2. Кислородно-конвертерные процессы
- •§ 2. Устройство кислородных конвертеров для верхней продувки
- •§ 3. Шихтовые материалы кислородно-конвертерного процесса
- •§ 4. Плавка в кислородном конвертере с верхней продувкой
- •1. Технология плавки
- •2. Режим дутья
- •3. Поведение составляющих чугуна при продувке
- •4. Шлаковый режим
- •5. Раскисление и легирование
- •6. Тепловой режим
- •7. Потери металла при продувке
- •8. Основные технические показатели
- •§ 5. Конвертерные процессы с донной продувкой кислородом
- •§ 6. Конвертерные процессы с комбинированной продувкой
- •6 7. Плавка с увеличенным расходом лома
- •§ 8. Передел высокофосфористых чугунов
- •§ 9. Передел пригодно легированных чугунов
- •§ 10. Экология, очистка конвертерных газов
- •§ 11. Автоматизация и контроль конвертерной плавки
- •6 12. Процессы с аргоно- и парокислородным дутьем
- •§ 13. Производство в конвертерах стали для литья
- •§ 1. Конструкция и работа мартеновской печи
- •1. Назначение и устройство отдельных элементов печи
- •§ 2. Тепловая работа и отопление мартеновских печей
- •6 3. Общая характеристика мартеновского процесса
- •1. Разновидности процесса
- •2. Особенности технологии мартеновской плавки
- •3. Шлакообразование и роль шлака в мартеновском процессе
- •§ 4. Основной мартеновский процесс и его разновидности
- •§ 5. Кислый мартеновский процесс
- •§ 7. Автоматизация работы мартеновской печи
- •§ 8. Тепловой и материальный балансы мартеновской плавки
- •Глава 4.Выплавка стали в электрических печах
- •§ 1. Устройство дуговых электропечей
- •1. Общее описание печи
- •2. Рабочее пространство печи
- •3. Рабочее пространство высокомощных водоохлаждаемых печей
- •4. Механическое оборудование печей
- •5. Электроды и механизмы для их зажима и перемещения
- •6. Электрооборудование дуговой печи
- •§ 2. Электрический режим
- •§ 3. Выплавка стали в основных дуговых электропечах
- •1. Шихтовые материалы электроплавки
- •2. Традиционная технология с восстановительным периодом
- •3. Выплавка стали методом переплава
- •5. Плавка в высокомощных водоохлаждаемых печах
- •6. Плавка с использованием металлизованных окатышей
- •7. Основные технические показатели
- •§ 4. Выплавка стали в кислых дуговых электропечах
- •§5. Электродуговые печи постоянного тока
- •§6. Работа электродуговых печвй и экология
- •§7. Выплавка стали в индукционных печах
- •1. Устройство индукционной печи повышенной частоты
- •2. Технология плавки
- •3. Плавка в вакуумных индукционных печах
- •Глава 5. Слитки и разливка стали
- •§1. Способы разливки стали. Разливка сифоном и сверху
- •§2. Кристаллизация и строение стальных слитков 1. Кристаллизация стали
- •2. Слиток спокойной стали
- •3. Слиток кипящей стали
- •4. Слиток полуспокойной стали
- •§ 3. Химическая неоднородность слитков
- •§ 6. Особенности разливки спокойной стали
- •1. Технология разливки
- •2. Защита металла в изложнице от окисления
- •3. Специальные методы теплоизоляции и обогрева верха слитка
- •17. Особенности разливки кипящей стали
- •§8. Дефекты стальных слитков
- •§1. Общая характеристика непрерывной разливки
- •1. Разновидности и преимущества способа
- •2. Основные типы унрс
- •3. Затвердевание непрерывно вытягиваемого слитка
- •§ 2. Устройство установок непрерывной разливки 1. Унрс с вытягиванием и скольжением слитка
- •2. Унрс без скольжения слитка в кристаллизаторе
- •3. Литейно-прокатные агрегаты
- •§ 4. Производительность унрс
- •§1. Общие условия
- •§ 2. Технологические основы внепечного рафинирования
- •§ 3. Современные способы вакуумирования
- •§4. Обработка металла вакуумом и кислородом
- •§5. Метод продувки инертными газами
- •§ 6. Аргонокислородная продувка
- •§7. Внепечная обработка и производство высокохромистых сталей и сплавов
- •§8. Обработка стали шлаками
- •§9. Введение реагентов в глубь металла
- •§ 10. Предотвращение вторичного окисления
- •§11. Методы отделения шлака от металла ("отсечки" шлака)
- •§ 12. Комбинированные (комплексные) методы внепечной обработки
- •§ 13. Внепбчная обработка стали
- •§ 14. Обработка стали в процессе кристаллизации
- •§ 15. Внепечная обработка стали и проблемы экологии
- •Глава 8. Комплексные технологии внепечной обработки чугуна и стали
- •§ 1. Внбдомбнная дбсульфурация чугуна
- •§ 2. Внедоменная дефосфорация чугуна
- •§ 3. Проведение обескремнивания и дефосфорации чугуна
- •§ 4. Совместное проведение операций десульфурации и дефосфорации
- •§ 5. Комплексные технологии внепечной обработки чугуна и стали
- •§ 1. Конструкции сталеплавильных агрегатов непрерывного действия (санд)
- •§ 2. Переплав металлолома
- •§ 3. Перспективы развития непрерывных процессов
- •§1. Вакуумный индукционный переплав
- •§2. Вакуумный дуговой переплав
- •§ 3. Элбктрошлаковый переплав
- •§ 4. Электронно-лучевой и плазменно-дуговой переплавы
- •§ 5. Перспективы развития переплавных процессов
- •Глава 2. Ферросплавная печь
- •§ 1. Восстановительные ферросплавные печи
- •§ 2. Рафинировочные ферросплавные печи
- •§3. Загрузка шихты в ферросплавные печи
- •Глава 5. Производство силикомарганца
- •Глава 6. Производство углеродистого феррохрома
- •Глава 7. Основы технологии производства
- •Глава 2. Металлургия меди
- •§ 1. Свойства меди и еб применение
- •§2. Сырье для получения меди
- •§ 3. Пирометаллургический способ производства меди
- •1. Подготовка медных руд к плавке
- •2. Плавка на штейн
- •3. Конвертирование медного штейна
- •4. Рафинирование меди
- •§ 1. Свойства никеля и его применение
- •§2. Сырье для получения никеля
- •§3. Получение никеля из окисленных руд
- •§4. Получение никеля
- •§1. Свойства алюминия и его применение
- •§2. Сырые материалы
- •§ 3. Производство глинозема
- •1. Способ Байера
- •2. Способ спекания
- •§ 4. Электролитическое получение алюминия
- •§ 5. Рафинирование алюминия
- •§1. Основы хлоридных методов производства металлов
- •§ 2. Производство магния
- •§ 3. Производство титана
- •§ 1. Правовые аспекты проблем охраны природы
- •Раздел X включает перечень задач, стоящих перед экологическим контролем.
- •§ 2. Основные направления охраны окружающей среды и рационального природопользования
- •§ 3. Охрана природы и металлургия.
- •§ 4. Защита воздушного бассейна
- •§ 5. Охрана водного бассейна
- •§ 6. Утилизация шлаков
- •§ 7. Использование шламов и выбросов
- •§ 8. Использование отходов смежных производств
- •§ 9. Использование вторичных энергоресурсов
- •§ 10. Использование металлургических агрегатов для переработки бытовых отходов
- •153008, Г. Иваново, ул. Типографская, 6.
§ 14. Обработка стали в процессе кристаллизации
Внепечная обработка жидкой стали дополняется различными способами воздействия на кристаллизующийся металл.
635
Электромагнитное перемешивание. Электромагнитное перемешивание (ЭМП) используется для решения двух задач:
для улучшения внутреннего строения заготовки (измель чения структуры, снижения степени ликвации в средней и центральной частях, уменьшения центральной пористости);
для улучшения поверхности заготовки (снижения коли чества поверхностных дефектов, количества неметаллических включений в поверхностном слое, повышения толщины наруж ной плотной корочки).
Механизм воздействия на металл при решении первой задачи основан на снижении перегрева, обламывании ветвей дендритов и создании циркуляции металла в жидкой сердцевине (рис. 210). Решение второй задачи связано с созданием потоков на поверхности металла в кристаллизаторе и улучшением условий выделения включений. В первом случае электромагнитное перемешивание осуществляется в зоне вторичного охлаждения, при этом можно создать либо вращающееся, либо бегущее магнитное поле. Во втором случае индуктор размещается в самом кристаллизаторе (рис. 211).
В основном применяют два вида перемешивания: круговое (вращательное) и осевое. Круговое применяют главным образом в кристаллизаторах сортовых УНРС, так как оно способствует удалению включений от поверхности заготовок, улучшению теплоотвода и уменьшению вероятности прорыва корочки.
Рис. 210. Изменение
формы растущего дендрита в зависимости
от характера потока металла у фронта
кристаллизации: 1
– без потока;
2 и
3 –
ламинарный и турбулентный потоки
соответственно
636
Рис. 211. Схемы систем для электромагнитного перемешивания, используемые на сортовых (заготовочных) и блюмовых УНРС
и вблизи конца жидкой лунки непрерывно-литой заготовки устанавливают оборудование для вращательного, а в средней части УНРС – для осевого перемешивания. Входит в практику непрерывное электроперемешивание, при котором обеспечивают движение жидкого металла ниже кристаллизатора у стенок заготовки вниз, по оси – вверх, а в кристаллизаторе наоборот: у стенки – вверх, по оси – вниз. Максимальный эффект получают тогда, когда перемешивание осуществляют и в кристаллизаторе, и в зоне вторичного охлаждения, и перед обжимными роликами.
637
В начале 80-х годов создан новый способ электромагнитного воздействия на металл – способ так называемого электромагнитного торможения . Оборудование включает комплекты расположенных вдоль каждой из широких стенок кристаллизатора намагничивающих катушек, при включении которых возникает постоянный ток большой силы, создающий магнитное поле. Поле замедляет скорость поступающей в кристаллизаторы струи стали, благодаря чему неметаллические включения получают возможность быстро всплывать на поверхность мениска. Особенно полезно электромагнитное торможение на радиальных УНРС, на которых при повышении скорости разливки увеличиваются отложения включений на внутреннем радиусе заготовки. Применение электромагнитного торможения позволило повысить скорость разливки на 30 % без увеличения загрязненности металла включениями (рис. 212).
Воздействие ультразвуком и электроразрядами. Энергия ультразвука, воздействующая на расплав, меняет кинетику процесса; при воздействии ультразвука наблюдается усиление перемешивания жидкой фазы, обламывание растущих кристаллов. Испытан ряд способов организации воздействия ультразвуком: через зеркало расплава в кристаллизаторе, через оболочку затвердевающего слитка в зоне вторичного охлаждения, через направляющие ролики, через водоохлаж-даемую ультразвуковую воронку и др.
Разработчики дали способу обозначение EMBR (Electromagnetic Brake).
Рис. 212. Схема
электромагнитного торможения EMBR
(Electromagnetic
Brake):
(В –
статическое магнитное поле, / – ток):
а, б –
вид со стороны широкой и узкой стороны
сляба соответственно
638
Украинский НИИмет и ПКБ электрогидравлики АН Украины на ряде металлургических заводов СНГ успешно исследовали способ воздействия на кристаллизующуюся середину заготовки с помощью электроразрядного генератора упругих колебаний (ЭРГУК). ЭРГУК представляет собой закрытую камеру с циркулирующей в ней водой низкого омического сопротивления и помещенным в ней электродом.
В камерах ЭРГУК, расположенных на нескольких уровнях по высоте и ширине заготовки и плотно прижатых мембранами к поверхности заготовки, периодически производятся электрические разряды. Генерируемые ими колебания широкого спектра через мембраны передаются оболочке заготовки и ее жидкой сердцевине. В результате повышается структурная, химическая и физическая однородность металла.
Разрабатывается и проходит опробование способ индуктивного электромагнитного перемешивания (КЭМП) жидкого ядра слитка при непрерывной разливке.
Сущность способа состоит в пропускании постоянного электрического тока через слиток и создании постоянного магнитного поля. В области жидкого ядра, где скрещиваются ток и магнитное поле, возникает поле электромагнитных сил, под действием которых жидкий металл начинает перемешиваться.
Воздействие вибрации. Под воздействием колебаний возрастает давление жидкого металла на растущие кристаллы, которые разрушаются, образуя при этом дополнительные центры кристаллизации. Это приводит к повышению скорости кристаллизации и уменьшению продолжительности коагуляции включений.
Искусственные холодильники и модификаторы. При воздействии микрохолодильников и модификаторов (например, РЗМ) создаются дополнительные центры кристаллизации в жидкой фазе слитка, причем образование зародышей равноосных кристаллов может произойти за зоной концентрационного переохлаждения, где металл чище и имеет высокую температуру плавления.
Ученые Института электросварки им. Патона совместно с Институтом проблем литья Украины и рядом заводов разработали технологию получения новых металлических конструкционных материалов – армированные квазимонолитные (АКМ) материалы.
639
Применительно к непрерывной разливке процесс АКМ позволяет управлять структурой непрерывно-литой заготовки путем ввода в жидкий расплав в кристаллизатор армирующего вкладыша в виде лент, сетки, прутков и др. Помимо подавления ликвационных явлений и повышения плотности металла такая технология позволяет увеличить скорость разливки и соответственно повысить производительность установок.
Разливка с механическим перемешиванием позволяет заметно изменить характер теплоотвода через кристаллизатор: при разливке стали удельные тепловые потоки увеличиваются по всей высоте кристаллизатора, причем заметно расширяется зона максимального теплоотвода, а также ускоряется снятие перегрева жидкой фазы: температура поверхности слитка на 50–70 °С выше, чем при разливке обычным способом. Важным следствием механического перемешивания жидкой стали в кристаллизаторе является уменьшение неравномерности толщины твердой корки по периметру слитка.
Приведенные примеры характеризуют пути изысканий новых методов внеагрегатной (внепечной) обработки металла при непрерывной разливке с целью повышения его качества.