
- •Общее описание печи 406
- •Часть 1.Производство чугуна и железа
- •Глава 1.Сырые материалы и их подготовка
- •§1. Железные руды
- •§2. Основные месторождения железных руд
- •§3. Марганцевые руды
- •§4. Флюсы и отходы производства
- •§5. Подготовка железных руд к доменной плавке
- •§6. Топливо
- •Глава 2. Конструкция доменной печи
- •§1. Общее описание печи
- •§2. Профиль печи и основные размеры
- •§3. Фундамент, кожух и холодильники
- •§4. Футеровка печи
- •§6. Колошниковое устройство
- •Глава 3. Доменный процесс
- •§1. Загрузка шихты и распределение материалов на колошнике
- •§2. Распределение температур, удаление влаги и разложение карбонатов
- •§3. Процессы восстановления
- •1. Восстановление железа
- •2. Восстановление марганца и выплавка марганцовистых чугунов
- •3. Восстановление кремния и выплавка кремнистых чугунов
- •4. Восстановление фосфора
- •5. Восстановление других элементов
- •§4. Образование чугуна
- •§5. Эбразование шлака и его свойства
- •§6. Поведение серы
- •§ 7. Дутье, процессы в горне и движение газов в печи
- •1. Дутье
- •2. Процессы в горне
- •3. Движение газов в печи и изменение их температуры, состава, количества и давления
- •§8. Интенсификация доменного прцесса
- •1. Нагрев дутья
- •2. Увлажнение дутья
- •3. Повышенное давление газа
- •4. Обогащение дутья кислородом
- •5. Вдувание в горн углеродсодержащих веществ
- •6. Комбинированное дутье
- •§ 9. Продукты доменной плавки
- •§ 10. Управление процессом, контроль, автоматизапще
- •§ 11. Организация ремонтов, задувка и выдувка печи
- •Глава 4. Оборудование и работа обслуживающих доменную печь участков
- •§ 1. Подача шихты в доменную печь
- •§ 2. Воздухонагреватели и нагрев дутья
- •§ 3. Очистка доменного газа
- •§ 4. Выпуск и уборка чугуна
- •§ 5. Выпуск и уборка шлака
- •Глава 5.Показатели работы доменных печей
- •§ 1. Материальный и тепловой балансы плавки
- •§ 2. Расход кокса
- •§ 3. Основные технические показатели
- •§ 1. Актуальность проблемы
- •§ 2. Процессы твердофазного восстановления железа
- •§ 3. Процессы жидкофазного восстановления (пжв)
- •§ 4. Решение проблем охраны природы и охраны труда
- •§ 1. История развития сталеплавильного производства
- •§ 2. Классификация стали
- •§ 3. Основные реакции и процессы сталеплавильного производства
- •1. Термодинамика сталеплавильных процессов
- •2. Кинетика сталеплавильных процессов
- •3. Сталеплавильные шлаки
- •4. Основные реакции сталеплавильных процессов
- •6. Неметаллические включения
- •7. Раскисление и легирование стали
- •§ 4. Шихтовые материалы сталеплавильного производства
- •§ 1. Разновидности конвертерных процессов
- •1. Конвертерные процессы с донным воздушным дутьем
- •2. Кислородно-конвертерные процессы
- •§ 2. Устройство кислородных конвертеров для верхней продувки
- •§ 3. Шихтовые материалы кислородно-конвертерного процесса
- •§ 4. Плавка в кислородном конвертере с верхней продувкой
- •1. Технология плавки
- •2. Режим дутья
- •3. Поведение составляющих чугуна при продувке
- •4. Шлаковый режим
- •5. Раскисление и легирование
- •6. Тепловой режим
- •7. Потери металла при продувке
- •8. Основные технические показатели
- •§ 5. Конвертерные процессы с донной продувкой кислородом
- •§ 6. Конвертерные процессы с комбинированной продувкой
- •6 7. Плавка с увеличенным расходом лома
- •§ 8. Передел высокофосфористых чугунов
- •§ 9. Передел пригодно легированных чугунов
- •§ 10. Экология, очистка конвертерных газов
- •§ 11. Автоматизация и контроль конвертерной плавки
- •6 12. Процессы с аргоно- и парокислородным дутьем
- •§ 13. Производство в конвертерах стали для литья
- •§ 1. Конструкция и работа мартеновской печи
- •1. Назначение и устройство отдельных элементов печи
- •§ 2. Тепловая работа и отопление мартеновских печей
- •6 3. Общая характеристика мартеновского процесса
- •1. Разновидности процесса
- •2. Особенности технологии мартеновской плавки
- •3. Шлакообразование и роль шлака в мартеновском процессе
- •§ 4. Основной мартеновский процесс и его разновидности
- •§ 5. Кислый мартеновский процесс
- •§ 7. Автоматизация работы мартеновской печи
- •§ 8. Тепловой и материальный балансы мартеновской плавки
- •Глава 4.Выплавка стали в электрических печах
- •§ 1. Устройство дуговых электропечей
- •1. Общее описание печи
- •2. Рабочее пространство печи
- •3. Рабочее пространство высокомощных водоохлаждаемых печей
- •4. Механическое оборудование печей
- •5. Электроды и механизмы для их зажима и перемещения
- •6. Электрооборудование дуговой печи
- •§ 2. Электрический режим
- •§ 3. Выплавка стали в основных дуговых электропечах
- •1. Шихтовые материалы электроплавки
- •2. Традиционная технология с восстановительным периодом
- •3. Выплавка стали методом переплава
- •5. Плавка в высокомощных водоохлаждаемых печах
- •6. Плавка с использованием металлизованных окатышей
- •7. Основные технические показатели
- •§ 4. Выплавка стали в кислых дуговых электропечах
- •§5. Электродуговые печи постоянного тока
- •§6. Работа электродуговых печвй и экология
- •§7. Выплавка стали в индукционных печах
- •1. Устройство индукционной печи повышенной частоты
- •2. Технология плавки
- •3. Плавка в вакуумных индукционных печах
- •Глава 5. Слитки и разливка стали
- •§1. Способы разливки стали. Разливка сифоном и сверху
- •§2. Кристаллизация и строение стальных слитков 1. Кристаллизация стали
- •2. Слиток спокойной стали
- •3. Слиток кипящей стали
- •4. Слиток полуспокойной стали
- •§ 3. Химическая неоднородность слитков
- •§ 6. Особенности разливки спокойной стали
- •1. Технология разливки
- •2. Защита металла в изложнице от окисления
- •3. Специальные методы теплоизоляции и обогрева верха слитка
- •17. Особенности разливки кипящей стали
- •§8. Дефекты стальных слитков
- •§1. Общая характеристика непрерывной разливки
- •1. Разновидности и преимущества способа
- •2. Основные типы унрс
- •3. Затвердевание непрерывно вытягиваемого слитка
- •§ 2. Устройство установок непрерывной разливки 1. Унрс с вытягиванием и скольжением слитка
- •2. Унрс без скольжения слитка в кристаллизаторе
- •3. Литейно-прокатные агрегаты
- •§ 4. Производительность унрс
- •§1. Общие условия
- •§ 2. Технологические основы внепечного рафинирования
- •§ 3. Современные способы вакуумирования
- •§4. Обработка металла вакуумом и кислородом
- •§5. Метод продувки инертными газами
- •§ 6. Аргонокислородная продувка
- •§7. Внепечная обработка и производство высокохромистых сталей и сплавов
- •§8. Обработка стали шлаками
- •§9. Введение реагентов в глубь металла
- •§ 10. Предотвращение вторичного окисления
- •§11. Методы отделения шлака от металла ("отсечки" шлака)
- •§ 12. Комбинированные (комплексные) методы внепечной обработки
- •§ 13. Внепбчная обработка стали
- •§ 14. Обработка стали в процессе кристаллизации
- •§ 15. Внепечная обработка стали и проблемы экологии
- •Глава 8. Комплексные технологии внепечной обработки чугуна и стали
- •§ 1. Внбдомбнная дбсульфурация чугуна
- •§ 2. Внедоменная дефосфорация чугуна
- •§ 3. Проведение обескремнивания и дефосфорации чугуна
- •§ 4. Совместное проведение операций десульфурации и дефосфорации
- •§ 5. Комплексные технологии внепечной обработки чугуна и стали
- •§ 1. Конструкции сталеплавильных агрегатов непрерывного действия (санд)
- •§ 2. Переплав металлолома
- •§ 3. Перспективы развития непрерывных процессов
- •§1. Вакуумный индукционный переплав
- •§2. Вакуумный дуговой переплав
- •§ 3. Элбктрошлаковый переплав
- •§ 4. Электронно-лучевой и плазменно-дуговой переплавы
- •§ 5. Перспективы развития переплавных процессов
- •Глава 2. Ферросплавная печь
- •§ 1. Восстановительные ферросплавные печи
- •§ 2. Рафинировочные ферросплавные печи
- •§3. Загрузка шихты в ферросплавные печи
- •Глава 5. Производство силикомарганца
- •Глава 6. Производство углеродистого феррохрома
- •Глава 7. Основы технологии производства
- •Глава 2. Металлургия меди
- •§ 1. Свойства меди и еб применение
- •§2. Сырье для получения меди
- •§ 3. Пирометаллургический способ производства меди
- •1. Подготовка медных руд к плавке
- •2. Плавка на штейн
- •3. Конвертирование медного штейна
- •4. Рафинирование меди
- •§ 1. Свойства никеля и его применение
- •§2. Сырье для получения никеля
- •§3. Получение никеля из окисленных руд
- •§4. Получение никеля
- •§1. Свойства алюминия и его применение
- •§2. Сырые материалы
- •§ 3. Производство глинозема
- •1. Способ Байера
- •2. Способ спекания
- •§ 4. Электролитическое получение алюминия
- •§ 5. Рафинирование алюминия
- •§1. Основы хлоридных методов производства металлов
- •§ 2. Производство магния
- •§ 3. Производство титана
- •§ 1. Правовые аспекты проблем охраны природы
- •Раздел X включает перечень задач, стоящих перед экологическим контролем.
- •§ 2. Основные направления охраны окружающей среды и рационального природопользования
- •§ 3. Охрана природы и металлургия.
- •§ 4. Защита воздушного бассейна
- •§ 5. Охрана водного бассейна
- •§ 6. Утилизация шлаков
- •§ 7. Использование шламов и выбросов
- •§ 8. Использование отходов смежных производств
- •§ 9. Использование вторичных энергоресурсов
- •§ 10. Использование металлургических агрегатов для переработки бытовых отходов
- •153008, Г. Иваново, ул. Типографская, 6.
17. Особенности разливки кипящей стали
Кипящую сталь разливают и сифоном, и сверху в уширяющиеся книзу сквозные изложницы. В обоих случаях для предотвращения заплесков металла на стенки изложницы и образования плен на нижней поверхности слитков стопор открывают плавно и нижнюю часть изложницы заполняют медленно. В дальнейшем скорость наполнения изложницы при разливке сверху определяется диаметром стакана сталеразливочного ковша, а при разливке сифоном – сечением каналов сифонного кирпича. При сифонной разливке перегретой стали и при чрезмерной ее окисленности могут происходить выплески металла из центровой. В этом случае в центровую для дополнительного раскисления вводят небольшое количество алюминия.
При разливке кипящей стали важным фактором является скорость подъема металла в изложнице, определяющая толщину здоровой корки в слитке. При сифонной разливке эта скорость обычно находится в пределах 0,2–0,6 м/мин, что обеспечивает достаточную толщину здоровой корочки в слит-
35-4050
545
ке (15–40 мм). Разливку сверху с целью сокращения ее общей продолжительности вынуждены вести со значительно большими скоростями, в результате чего уменьшается толщина здоровой корочки. Скорость разливки сверху без интен-сификаторов кипения обычно составляет 0,5–1,0 м/мин и при скорости около 1,0 м/мин получают здоровую корочку минимально допустимой толщины (8–10 мм). Продолжительность отливки слитков массой 5–20 т при разливке сифоном составляет 5–12, при разливке сверху 2–4 мин
После окончания наполнения изложницы металл в ней некоторое время кипит, а затем для уменьшения развития химической неоднородности кипение прекращают, применяя механическое или химическое закупоривание слитка. Состав с изложницами выдерживают у разливочной площадки до начала транспортировки не менее 20 мин.
Механическое закупоривание. Кипение в изложнице продолжается до тех пор, пока у ее стенок затвердеет слой металла, достаточный для укладки на него крышки. Толщина этого слоя составляет около 1/6 толщины слитка, а время кипения 7–15 мин. Затем на поверхность металла укладывают массивную металлическую крышку, вызывающую охлаждение и замораживание верха слитка, в результате чего прекращается кипение. Крышки снимают со слитка через 20–30 мин после закупоривания.
Химическое закупоривание. Как показал опыт, механическое закупоривание обеспечивает удовлетворительное качество слитков массой менее 6–8 т. В более крупных слитках из-за длительного кипения (7–15 мин) ликвация развивается столь сильно, что для удаления скоплений вредных примесей требуется существенное увеличение головной обрези при прокатке. Поэтому в последние годы, особенно в связи с увеличением массы отливаемых слитков, вместо механического закупоривания применяют химическое.
При химическом закупоривании для прекращения кипения и ускорения застывания верха слитка в изложницу вводят рас-кислители. Используют алюминий (гранулированный, жидкий) и иногда ферросилиций (в виде кусков размером 4–30 мм), которые дают на поверхность металла через 1–1,5 мин после окончания наполнения изложницы. Лучшие результаты дает применение алюминия, расход которого на закупоривание изменяется в пределах 100–600 г на 1 т стали и увеличивает-
546
ся при снижении содержания углерода и марганца в стали При недостаточном количестве алюминия верхняя часть слитка получается рослой, а при избыточном в ней образуется концентрированная усадочная раковина. В обоих случаях возрастает головная обрезь, что нежелательно Признаком правильно выбранного расхода алюминия служит выпуклая гладкая поверхность слитков без прорывов жидкого металла
При химическом закупоривании алюминием вследствие уменьшения ликвации головная обрезь крупных слитков кипящей стали составляет 4–8 % вместо 8–13 % при механическом закупоривании.
Применение интенсификаторов кипения. Как показал опыт, уровень окисленности кипящей стали, при ее выплавке существующими методами таков, что ее можно разливать со скоростью подъема металла в изложнице не более 1 м/мин, поскольку при большей скорости толщина здоровой корочки слитка получается недостаточной (< 8–10 мм). В последние годы в связи с недостаточной пропускной способностью разливочных отделений сталеплавильных цехов скорости разливки вынуждены увеличивать; в этом случае для увеличения толщины здоровой корочки в изложницу при разливке вводят интенсификаторы кипения – порошкообразные смеси, содержащие оксиды железа и способные легко передавать кислород этих оксидов жидкой стали. Вследствие увеличения окисленности стали повышается интенсивность ее кипения, что обеспечивает утолщение здоровой корочки.
В состав интенсификаторов кипения входят, %: прокатная окалина 70–85, плавиковый шпат 5–20, кальцинированная сода 0–10, натриевая селитра 0–12, коксик 0–13. Смесь вводят в изложницу в течение всего времени ее наполнения. Расход смеси составляет 200–850 г на 1 т стали, возрастая при увеличении содержания в ней углерода. Применение ин-тенсификатора кипения позволяет получать здорбвую корочку достаточной толщины при увеличении скорости разливки до 2,0–2,5 м/мин. Иногда увеличения интенсивности кипения достигают, обдувая при разливке струю металла кислородом.
Углеродистый интенсификатор кипения. В последние годы разработан новый способ повышения интенсивности кипения, не требующий увеличения окисленности жидкой стали. На поддоне, служащем для установки сквозных изложниц, закрепляют брикеты или наносят покрытие из углеродистого ма-
547
териала (например, из антрацита с каменноугольным пеком). Взаимодействие углерода этого материала с кислородом жидкой стали вызывает активное кипение с пронизыванием пузырями СО металла по всей высоте изложницы, что способствует увеличению толщины здоровой корочки и вызывает повышение выхода годных слябов без зачистки их поверхности. Кроме того, происходит раскисление металла твердым углеродом, что ведет к снижению количества оксидных включений в слитке; отмечено также снижение химической неоднородности металла.
Скоростная разливка. В последние годы на ряде заводов освоена разливка химически закупориваемой и полуспокойной сталей со скоростью наполнения изложниц до 4–5 м/мин. При разливке кипящей стали со столь большой скоростью подъема металла в изложнице пузыри начинают формироваться у самой поверхности слитка, а благодаря быстрому закупориванию они не успевают вырасти до значительных размеров. Получается слиток без здоровой корочки с мелкими подкорковыми пузырями. Тонкий наружный слой металла с пузырями, окисляясь при нагреве слитка под прокатку, переходит в окалину, и поверхность проката получается без дефектов, несмотря на отсутствие здоровой корочки.
При скоростной разливке полуспокойной стали пузыри либо не образуются, либо формируются мелкие подкорковые пузыри, зона расположения которых при нагреве под прокатку переходит в окалину.