
- •Змістовий модуль 1. Структура та кінематика механізмів
- •1.2. Основні пробеми дисципіни тмм, її розділи і місце серед інших дисциплін. Історія розвитку.
- •Мiсце тмм серед iнших дисциплiн
- •1.3. Загальні визначення: машина, механізм. Види машин і механізмів.
- •Класифiкацiя машин
- •Машинний агрегат
- •1.4. Компоненти механізму.
- •Структурна будова механізмів
- •Абсолютно тверде тіло в просторі
- •К ласифікація кінематичних пар
- •2.2. Кінематичні ланцюги та їхня класифікація.
- •К інематичні ланцюги
- •2.3. Структурні формули кінематиних ланцюгів. Сімейства механізмів.
- •2.4 Принцип утворення механізмів.
- •Лекція 3. Класифікація механізмів План лекції.
- •Г рупи Ассура
- •3.2. Класифікація механізмів. Послідовність структурного аналізу.
- •Р ізновиди механізмів іі кл.Іі пор.
- •3.3. Зайві ступені вільності та пасивні умови зв'язку.
- •К улачковий механізм із зайвим ступенем вільності
- •Важільний механізм з пасивними зв'язками
- •3.4. Замінюючі механізми.
- •З амінюючі механізми
- •Лекція 4.
- •План лекції:
- •4.2. Синтез кривовшипно повзунного механізму.
- •П обудова кривошипно-повзунного механізму
- •С хема до визначення r і l
- •С хема до визначення r ; l і e.
- •С хема до визначення r і l.
- •4.3. Синтез кривошипно-коромислового механізму.
- •К ривошипно-коромисловий механізм
- •4.4. Синтез кулісного механізму.
- •К улісний механізм
- •Лекція 5.
- •План лекції:
- •Г рафіки переміщеная вхідної ланки
- •5.2. Визначення положень ланок та траєкторій, що описують характерні точки ланок.
- •П обудова траєкторії точки
- •5.3. Кінематичні діаграми механізмів. Масштаби діаграм.
- •П обудова кінематичних діаграм
- •К ривошишо-коромисловий механізм
- •Лекція 6.
- •План лекції:
- •Г рупа Ассура іі кл., іі пор., і- виду.
- •6.2. Визначення прискорень окремих точок груп Ассура та кутових прискорень ланок.
- •Г рупа Ассура іі кл., іі пор., і виду
- •6.3. Плани швидкостей важільного механізму.
- •6.4. Плани прискорень важільного механізму.
- •Лекція 7.
- •План лекції:
- •7.2. Аналітична кінематика кривошипно-коромислового механізму.
- •К ривошипно-коромисловий механізм
- •7.3. Аналітична кінематика кривошипно-повзунного механізму.
- •Кривошипно-повзунного механізм
- •7.4. Аналітична кінематика кулісного механізму.
- •К улісний механізм
- •К улачкові механізми
- •К онструкції штовхачів
- •З амикання кулачкових механізмів
- •8.2. Закони руху веденої ланки. Фазові кути.
- •З акони руху веденої ланки
- •8.3. Кінематичний аналіз кулачкових механізмів.
- •К інематичний аналіз кулачкових механізмів методом діаграм
- •8.3.1. Аналіз методом діаграм.
- •8.3.2. Аналіз методом планів.
- •9.2. Кут тиску та кут передачі руху.
- •9.3. Динамічний синтез кулачкових механізмів.
- •9.3.1. Визначення початкового радіуса профілю кулачка для кулачкових механізмів з роликовим штовхачем.
- •К улачковий механізм з роликовим штовхачем
- •9.3.2.Визначення початкового радіуса профілю кулачка для кулачкових механізмів з тарілчастим штовхачем.
- •10.2.Циліндрична фрикційна передача
- •Ц иліндрична передача
- •10. 3.Конічна фрикційна передача
- •К онічна передача
- •Л обовий варіатор
- •З убчасте зачеплення
- •11.2 Евольвента кола та її властивості.
- •11. 3. Основні розміри циліндричних зубчастих коліс.
- •Ц иліндричні зубчасті колеса
- •11.4 Геометрія евольвентного зачеплення.
- •11. 5. Косозубі циліндричні колеса. Основні параметри.
- •К онічна зубчаста передача
- •Профілювання конічної передачі
- •12.2 Черв’ячна передача.
- •Ч ерв’ячна передача
- •12.3 Гвинтові зубчасті колеса .
- •12. 4. Поняття про нові види зубчастого зачеплення.
- •Зачеплення Новікова
- •План лекції
- •13. 2. Зубчасті механізми з рухомими осями. Планетарні та диференціальні механізми.
- •З убчасті механізми з рухомими осями
- •Зубчасті механізми типу редуктора Давида
- •13. 3 Кінематика диференціальних та планетарних механізмів
- •13.4. Визначення передаточних відношень планетарних механізмів графічним методом.
- •13. 5 Поняття про хвильову передачу. Кінематика.
- •14. 2 Методи нарізання зубів зубчастих коліс
- •14.3. Підрізування зубів. Найменше число зубів на колесі.
- •14.4 Виправлення /корегування/ зубчастих коліс.
- •Змістовий модуль 3. Динамічний аналіз механізмів Лекція 15.
- •15.2. Сили, що діють в механізмах.
- •15.3. Механічні характеристики машин.
- •15.4. Режими руху механізмів.
- •Лекція 16. Тертя в поступальних кінематичних парах
- •16.2. Тертя на похилій площині.
- •16.3. Тертя в клинчастому і циліндричному жолобі.
- •16.4. Тертя в гвинтовій парі.
- •Лекція 17. Тертя ковзання в обертальних та кочення у вищих кінематичних парах.
- •17.2. Тертя гнучкої ланки по нерухомому барабану.
- •17.3. Тертя кочення у вищих кінематичних парах.
- •17.3.1. Переміщення вантажу на катках.
- •17.3.2. Переміщення вантажу на візку.
- •Лекція 18.
- •18.2. Визначення сил інерції ланок плоских механізмів.
- •18.3. Зведення сил інерції ланки до центру коливання.
- •18.4. Метод заміщених точок.
- •19.2. Умова статичної визначеності кінематичного ланцюга.
- •19.3. Кінетостатика груп Ассура п класу п порядку.
- •19.3. 1. Кінетостатика груп Ассура і виду.
- •19.3.2. Кінетостатика груп Ассура II виду.
- •19.3.3. Кінетостатика груп Ассура III виду.
- •19.4. Кінетостатика механізму і класу.
- •Лекція 20.
- •20.2. Визначення коефіцієнту корисної дії при послідовному з'єднанні механізмів.
- •20.3. Визначення коефіцієнту корисної дії при паралельному з'єднанні механізмів.
- •Паралельне з'єднання механізмів
- •20.4. Коефіцієнт корисної дії кінематичних пар.
- •21.2. Зведені сили і моменти.
- •21.3. Теорема м.Є. Жуковського.
- •21.4. Зведена маса і зведений динамічний момент інерції механізму.
- •Лекція 22.
- •22.2. Нерівномірність руху механізмів.
- •22.3. Середня швидкість руху. Коефіцієнт нерівномірності руху.
- •23.2. Графік зведеного динамічного моменту інерції механізму.
- •23.3. Діаграма енергомас.
- •Лекція24.
- •24.2. Зрівноважування обертових тіл.
- •24.3. Зрівноважування механізмів.
- •24.4. Статичне і динамічне балансування обертових тіл.
- •24.5. Віброзахист машин.
17.3.2. Переміщення вантажу на візку.
Знайдемо горизонтальну рушійну силу Fρ , необхідну для рівномірного переміщення візка з вантажем, сила тяжіння якого Fg1, a сила тяжіння кожного із коліс Fg2, /рис. 17.5/. Позначимо радіуси: колеса R , цапфи r .
Прирівняємо елементарну роботу рушійної сили Fρ на елементарному переміщенні dx до суми елементарних робіт від моменту тертя кочення коліс відносно площини x - x і від моменту тертя ковзання в цапфах коліс, отримаємо: Ар=Ax-x+Afц.
Вантаж
на візку
Рис.17.5
/17.33/
Знайдемо елементарне переміщення
/17.34/
Підставимо в рівняння робіт /17.33/ значення dx із /17.34/, отримаємо:
/17.35/
звідси маємо:
/17.36/
Подамо ряд значень коефіцієнту тертя кочення K при певних умовах тертя:
Умови тертя Коефіцієнт К, мм
Стальні бандажі коліс залізничних вагонів відносно рейок 0.5...0.55
Дерево відносно дерева 0.5...1.3
Загартовані стальні кульки і ролики в підшипниках кочення 0.01
Колеса візків із залізними шинами відносно асфальту 6 Те саме відносно піску 15...30
Лекція 18.
Сили інерції в механізмах.
План лекції:
18.1. Загальні положення.
18.2. Визначення сил інерції ланок плоских механізмів.
18.3. Зведення сил інерції ланки до центру коливання.
18.4. Метод заміщених точок.
18.І. Загальні положення.
Внаслідок руху ланок механізму з прискореннями в кінематичних парах виникають додаткові динамічні зусилля. Для визначення цих зусиль кожну ланку механізму слід зрівноважити прикладанням до неї у відповідній точці фіктивної сили і фіктивного моменту пари сил, які за величиною рівні силі і моменту пари сил, що визивають прискорений рух ланки. Цю фіктивну силу називають масовою силою, або силою інерції Fі, а фіктивний момент пари сил - моментом пари сил інерції Mi.
Слід підкреслити, що ніякої сили інерції Fі і ніякого моменту пари сил інерції Mi до ланки в дійсності не прикладено. Сила Fі момент Mi не мають ніякого фізичного змісту, а в розрахунках виконують роль не більше, ніж чисто математичних величин, за допомогою яких враховується вплив прискореного руху ланок на додаткові динамічні зусилля в кінематичних парах.
18.2. Визначення сил інерції ланок плоских механізмів.
Ланка механізму складається з окремих матеріальних точок, прискорення яких в загальному випадку складного руху різні. Тому різні і елементарні сили інерції, умовно прикладені в цих точках. Система елементарних сил інерції матеріальних точок ланки, яка здійснює плоскопаралельний рух і має площину симетрії, паралельну площині руху, зводиться до головного вектора Fі, який прикладений у центрі мас ланки, і до головного моменту Mi пари сил інерції.
Головний вектор сил інерції:
/18.1/
де
т
- маса
ланки,
кг;
- вектор
повного
прискорення
центра
мас S
ланки,
м/с2.
З
рівності
/18.1/ випливає,
що
сила
інерції
Fі
вимірюється
в Н.
Напрям
сили
інерції
Fі.
протилежний
напряму
вектора
прискорення
.
На
це
вказує
знак
"-" в
/18.1/.
Момент Mi пари сил інерції спрямований протилежно кутовому прискоренню ε і визначається за формулою:
/18.2/
де Іs – динамічний момент інерції ланки, що дорівнює добутку маси т ланки на квадрат його радіуса інерції ρЅ відносно центра мас Ѕ
/18.3/
Момент інерції Іs вимірюють в кгм2, а кутове прискорення ε – в рад/с2. Oтже, момент Мі пари сил інерції вимірюється в НМ. Площина, в якій він діє, паралельна площині руху ланки.