Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бунтова ЛЕКЦИИ ИНЖЕНЕРЫ 19.docx
Скачиваний:
1108
Добавлен:
12.04.2015
Размер:
2.99 Mб
Скачать

43.4. Комбинаторика как наука

Комбинаторика – ветвь математики, изучающая комбинации и перестановки предметов. Еще комбинаторику можно понимать как перебор возможных вариантов. Комбинаторика возникла в семнадцатом веке. Долгое время она лежала вне основного русла математики.

С задачами, в которых приходилось выбирать те или иные предметы, располагать их в определенном порядке и отыскивать среди разных расположений наилучшие, люди столкнулись в доисторическую эпоху, выбирая наилучшее расположение охотников во время охоты, воинов – во время битвы, инструментов – во время работы.

Комбинаторные навыки оказались полезными и в часы досуга. В таких играх, как нарды, карты, шахматы, шашки и т.д. приходилось рассматривать различные сочетания фигур, и выигрывал тот, кто их лучше изучил, знал выигрышные комбинации.

Не только азартные игры способствовали развитию комбинаторики. Дипломаты, стремясь к тайне переписке, изобретали сложные шифры, а секретные службы других государств пытались эти шифры разгадать. Стали применять шифры, основанные на комбинаторных принципах, например, на различных перестановках букв.

Комбинаторика как наука стала развиваться в восемнадцатом веке параллельно с возникновением теории вероятностей, так как для решения вероятностных задач необходимо было подсчитывать число различных комбинаций элементов. Первые научные исследования по комбинаторике принадлежат итальянским ученым Дж. Кардано, Н. Тарталье, Г. Галилею и французским ученым Б. Паскалю, П. Ферма. Комбинаторику как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666 году. Он впервые ввел термин «комбинаторика».

Комбинаторика – это наука о расположении элементов в определенном порядке и о подсчете числа способов такого расположения.

Рассмотрим наиболее употребительные из них.

43.5. Сочетания. Размещения. Перестановки

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

Где ().

Рассмотрим пример: сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая цифра входит в изображение числа только один раз?

Решение:

.

Или такой пример. Порядок выступления семи участников на студенческой конференции определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?

Решение: каждый вариант жеребьевки отличается только порядком участников, то есть является перестановкой из 7 элементов. Их число находится

.

Пример. К кассе за получением денег подошли одновременно 4 человека. Сколькими способами они могут выстроиться в очередь?

Решение: очередь состоит из 4 различных лиц, поэтому в каждом способе составления очереди учитывается порядок их расположения. Таким образом, имеют место перестановки из четырех человек, их число равно

Размещениями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо их порядком, либо составом элементов.

Число всех возможных размещений рассчитывается

Пример: сколько можно составить сигналов из 6 флажков различного цвета, взятых по два?

Решение:

Пример: расписание одного дня состоит из пяти уроков. Определить число вариантов расписания при выборе из 11 дисциплин.

Решение: каждый вариант расписания представляет набор 5 дисциплин из 11, отличающийся от других вариантов, как составом дисциплин, так и порядком их следования, то есть является размещением из 11 элементов по 5. Число вариантов расписания находят по формуле

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

Пример: сколькими способами можно выбрать 2 детали из ящика, содержащего 10 деталей?

Решение:

Пример: в шахматном турнире участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?

Решение: каждая партия играется двумя участниками из 16 и отличается только составом пар участников, то есть представляет собой сочетание из 16 элементов по два

Пример: имеется 6 штаммов бактерий. Для определения скорости их роста необходимо выбрать три штамма. Сколькими способами можно это сделать?

Решение: способы отбора считаются различными, если каждый отобранный штамм различается хотя бы одним элементом. Это число

То есть имеется 20 способов.

Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

При решении задач комбинаторики используют следующие правила.

Правило суммы: если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект В можетбыть выбран n способами, то выбрать либо А, либо В можно способами.

Правило произведения: если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А,В) в указанном порядке может быть выбрана способами.

Пример: в студенческой группе 14 девушек и 6 юношей. Сколькими способами можно выбрать, для выполнения различных заданий, двух студентов одного пола?

Решение: по правилу умножения двух девушек можно выбрать способами, а двух юношейспособами. Следует выбрать двух студентов одного пола: двух девушек или двух юношей. Согласно правилу сложения таких способов выбора будет 182 + 30 = 212.

Контрольные вопросы

1. Что называют графом?

2. Какие вершины графа можно назвать смежными?

3. Возможно ли начертить граф с нечетным числом нечетных вершин?

4. Чем определяется полный граф?

5. Что называют перестановками, размещениями, сочетаниями?

6. Сформулировать правила суммы и произведения.

Лекция №44. Вероятность события

44.1. Развитие теории вероятностей как науки.

44.2. Виды случайных событий.

44.3. Классическое определение вероятности.

44.4. Относительная частота.

44.5. Теорема сложения вероятностей для несовместных событий. Противоположные

события.

44.6. Условная вероятность. Теорема умножения вероятностей.

44.7. Теорема сложения вероятностей для совместных событий.

44.8. Формула полной вероятности. Формула Байеса.